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Abstract

In this thesis, we focus on estimation of local and global ranks of demand systems. 

Demand systems have been among central objects of study in Economic Theory since as 

early as the 19th century. They are functional relations y  =  f ( x , z )  where y  are expen

ditures of a consumer for some groups of goods, x  is consumer’s total income and z  are 

prices of these groups of goods faced by the consumer. The interest is in the function /  

which characterizes the relation. Local and global ranks are its characteristics, essentially 

the minimum number of functions needed to explain its structure.

We consider two statistical models of demand systems, namely, a  semi-parametric factor 

model and a non-parametric model, and focus on estimation of their local and global ranks. 

The major departure from the earlier statistical work is th a t we allow for price variable 

z  to enter into the models, and hence distinction between local and global ranks becomes 

necessary. The inclusion of prices is meaningful because the data available to researchers 

cover households across the United States and it is clear th a t, for example, those living in 

New York face different prices from those residing in Minneapolis.

Since the two models involve unknown functions, we first introduce and study their 

estimators. These estimators are then used to provide statistical tests to determine the 

local ranks of the two models of demand systems. In the case of the semi-parametric factor

v
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model, we apply to our context known rank estimation methods such as the minimum ^ 2, 

asymptotic least squares, or that based on the so-called LDU decomposition. In the case 

of the non-parametric model, the tests are novel.

We apply our estimators of local ranks to economic data  which is constructed by using 

the CEX expenditure surveys data and the price data published by the ACCRA organiza

tion. We also perform some simulations to support conclusions made in applications.

Global rank tests are discussed in length but no formal tests are provided. We ex

plain the difficulties behind the global tests and outline some possible approaches to their 

construction.
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Chapter 1

Introduction

There are many situations in statistics, mathematics and other natural or even social 

sciences where one wants to define and then to measure the dimension of an object. Well- 

known examples are the dimension of a  geometrical object in a  Euclidean space, the rank of 

a matrix or the dimension of a  vector space spanned by a set of functions. The knowledge 

of a dimension can be used, depending on the context, to understand better the object of 

interest, to represent it or to eliminate redundant information.

One area where the notion of a  dimension arises naturally and has important impli

cations, is the theory of demand systems in economics. Im a g in e  a  typical consumer or a  

household purchasing goods over a  period of time. Since goods are of great variety, con

sider them in groups of similar goods, like food, health, transportation, clothing, recreation 

and others. For a particular group of goods, a  consumer then allocates a  share of her/his 

income. A demand system explains how these expenditures for groups of goods, called 

budget shares of goods, are related to total expenditures (income) of a  consumer. More 

precisely, it is a functional relation y = f ( x ,  z) where y  is a  vector of budget shares of 

goods, z  is a  vector of prices of goods faced by a consumer and x  is the total income of a  

consumer. We will assume hereafter that there are J  groups of goods so that the dimen

sion of a vector y or a  vector /  is J.  The variable z  can be not only a  vector of prices but 

also a vector of demographic or household characteristics, like the age of a consumer or 

the total number of children, or other non-income characteristics which affect preferences 

of a consumer or a  household. Demand systems have been extensively studied in theory,

1
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starting with Engel’s work as early as the end of the 19th century, and they have been also 

widely used in applications.

We will focus on a particular property of a demand system, namely, its dimension 

which is called a rank of a demand system. The notion of a  rank was introduced by 

Gorman [41] and developed further by Lewbel [63]. It has attracted  a growing interest 

among researchers in economics and in statistics. To understand the rank of a demand 

system, consider its functional form y =  f {x , z ) .  Since /  is a J  x 1 vector, its coordinates 

are J  functions f i (x ,  z ) , . . .  ,/j(a r , z). The local (at z) rank of a  demand system is then 

defined as a  dimension of the space spanned by the functions f j  (x, z), j  =  1 , . . . ,  J ,  for a 

fixed z. The global rank of a demand system is defined as the maximum over z of all local 

ranks of a  demand system.

While the definition of rank may seem easy from a mathematical point of view, it 

has im portant implications for Economic Theory. For example, Lewbel [63] has shown 

that functional structure and aggregation of demand systems are implications of their 

rank. Functional structure refers to an explicit form of the function /  in a  demand system 

relation, for example, f (x ,  z) =  a(z) +b(z)x+c(z)  Inx. Such forms are deduced from a rank 

of demand systems by using general, utility function based, Economic Theory. Aggregation 

properties of a demand system determine how one can go from a  demand system for an 

individual consumer to a demand system for the market as whole.

Parallel to understanding its implications for Economic Theory, the rank of a demand 

system has been also extensively studied on statistical and empirical levels. Since this 

constitutes an important conceptual departure from the deterministic situation discussed 

above, we need to make some preliminary observations. A statistical model for a demand 

system can be assumed to have a  stochastic form Y{ =  f{X{,  Zi) +  et-, where Yi, Xi  and 

Zi are the shares of goods, the total income and the prices faced by (or demographic 

characteristics of) the ith  consumer, and e, is the noise term. The rank of a  stochastic 

demand system is then defined in the same way as in the deterministic situation by using
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the coordinate functions of a vector f {x , z ) .

Two types of problems have been related to statistical inference concerning the rank 

of demand systems. In the first type of problems, the function /  in a demand sys

tem relation is supposed to have a  parametric or a semi-parametric form, for exam

ple, f { x , z ) =  0r(z)(lno;)r-1 =  0(z)V(x),  where 9 is a J  x d  matrix and V(x) =

(1, Inzr,. . . ,  (lnrr)1*-1 ) is a d x  1 vector. The specific form of the function /  depends on one’s 

beliefs on what best represents a  real life situation, or it can be chosen from a large library 

of functions already used to model demand systems independently of the theory of their 

ranks. Under a  (semi-) parametric model, one can typically express the rank of a demand 

system as a rank of some matrix. For example, in the last example f ( x , z) =  0(z)V(x),  the 

(local) rank of a  demand system is the rank of a  matrix 9{z). The problem then is that of 

determining the rank of a matrix estimated from the observations. This problem was first 

addressed by Hsu [53] and by Anderson [7, 8] under normality assumptions. Their work 

was extended to more general situations by Gill and Lewbel [38], and Cragg and Donald 

[20] leading to what is now known as the LDU based test and the minimum-x2 test for 

the rank of a matrix. In the second type of problems, one starts with the non-parametric 

demand system relation and then makes an inference about its rank directly. The pio

neering and most successful work in this direction has been accomplished by Donald [28]. 

Donald developed statistical tests to determine whether a (J  — 1) x 1 vector F(x, z ) ,  which 

is obtained from the J  x 1 vector f ( x ,  z) by eliminating one of its elements, can be factored 

as F(x,z)  = c(z) -F A(z)H(x,z) ,  where c(z) is a  ( J  — 1) x 1 vector, A(z)  is a  ( J  — 1) x L 

matrix and H (x, z) is a L x 1 vector. The rank of a demand system y  =  f ( x , z) is then 

determined by finding the smallest L  for which the above factorization holds, and adding 

to it 1. (One drops a share of goods from a demand system in order to have a non-singular 

variance-covariance matrix of a  random noise.)

In most of the statistical work thus far, it has been assumed th a t either prices are 

constant across consumers or that demographics are not important (or observed). Neither
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of these assumptions is realistic. For example, prices for those living in New York are higher 

than for those residing in Minneapolis. The focus of the thesis will be on extensions of the 

problems described above to the situation where variations in prices (or also demographic 

characteristics) are taken into account. More precisely, we will provide statistical tests to 

determine the local ranks in two types of demand systems, namely, demand systems given 

by the semi-parametric factor relation Y{ = 9(Zi)V(Xi)  +  e,-, t =  1,...,1V , where 6{z) is 

a J  x d unknown m atrix and V(x)  is a  d x 1 known vector, and demands systems given 

by a non-parametric relation V* =  f (X i , Z i )  -+- e*, i =  1 ,...,1V , where f ( x , z )  is a J  x 1 

unknown vector. We will also explain the difficulties behind estimation of corresponding 

global ranks and outline some possible approaches to solution.

To avoid singularity of a variance-covariance m atrix of noise variables et- (due to the 

summing up to 1 condition of the shares), we will drop one share of goods from our analysis 

and consider instead the corresponding reduced systems, namely, a  semi-parametric factor 

(SPF) model V* =  &(Zi)V(Xi)  + Ui, i = 1 , . . . , N,  where 0 (z )  is a G x d  unknown matrix, 

V(x) is a  d x 1 known vector and C/,- are noise variables, and a  non-parametric (NP) model 

Vi =  F(Xi ,  Zi) -I-Ui, i = I , . . . ,  N,  where F(x,  z)  is a  G x 1 unknown vector [G =  J  — 1 when 

these models are applied to demand systems). The noise variables f/t are now supposed 

to have a non-singular variance-covariance m atrix. Local r a n k s  for semi-parametric factor 

and non-parametric demand systems will be deduced from the local rank of (SPF) model 

and from, what we call, the  adjusted r a n k  of (NP) model. The methods to estimate local 

(adjusted) ranks in the two models will be referred to as local tests and those to estimate 

global (adjusted) ranks will be referred to as global tests.

The local rank of (SPF) model is, in fact, the rank of the m atrix 0(z). Since the matrix 

0(z) is unknown, we will first construct its estimator, which will be kernel based. We will 

then go over the known tests for the rank of a  matrix, in particular, the LDU based test 

and the minimum-x2 test, applied to the m atrix 0 (z )  and its estimator 0 (z ). One of the 

key assumptions in these tests is the asymptotic normality of the estimator 0 (z ). We will
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show that @ (z) is indeed asymptotically normal and, moreover, as part of our study, we 

will establish its consistency with corresponding convergence rates. In addition, we will 

draw some connections between the minimum-x2 test and eigenvalues of some random 

matrices. This will shed light on the minimum-x2 test statistic and will allow us to use 

different techniques in reestablishing its limit laws.

Local tests in (NP) model will be developed by following ideas of Donald mentioned 

above. Specifically, we will use the key observation th a t the (local) rank of (NP) model is 

L  if and only if the matrix

r w,z =  E 1 (Xi l z ) F ( X i l z ) F ( X i , zY ,

where F ( x , z )  =  F (x ,  z)E/3(Xi,  z)  —  EF (X i ,  z)/3(Xi, z)  with some suitably chosen real

valued functions y(x ,  z) > 0  and /3(x, z)  ^  0, has G  —  L  zero eigenvalues. The local tests 

will then be based upon the asymptotics of the smallest eigenvalues of a kernel based 

estim ator of r WjZ. To establish these asymptotic laws, we will use the so-called Fujikoshi 

expansions for eigenvalues along with techniques from the theory of C/-statistics. Our 

results therefore extend the results of Donald to the case where coefficient matrices vary 

with covariates, so that the distinction between local and global tests becomes necessary.

Turning to global tests, we will introduce some global test statistics, explain the dif

ficulties in establishing their limit laws and outline some possible approaches to solution. 

This will lay a  path and point to directions for the future research.

The final part of the thesis will be devoted to applications of the introduced estimators 

in economic data and to their simulation study. In applications, we will use the Interview 

Survey Public Use Tapes of the Consumer Expenditure Surveys data  (CEX data, in short) 

published by the Bureau of Labor Statistics in the United States and the Inner-City Price 

Indices data for the United States published by the American Chamber of Commerce 

Researchers Association (ACCRA data, in short). The la tter dataset only now comes to 

the attention of econometricians working on demand systems. It was first used by Nicol
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[76] to account for price variations in an observed data of demand systems.

The rest of the thesis is structured as follows. In Chapter 2, we give a  short overview of 

demand systems, their ranks and related statistical work. In Chapter 3, we introduce semi- 

parametric factor (SPF) and non-parametric (NP) models, formulate related problems and 

draw connections to ranks of demand systems. In Chapter 4, we introduce some kernel 

based estimators that are used later, and establish some of their properties. Chapters 5 

and 6 are on local and global (adjusted) ranks for semi-parametric factor (SPF) and non- 

parametric (NP) models. Applications and a simulation study of the introduced estimators 

can be found in Chapter 7.
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Chapter 2

Demand Systems

As described in the introduction in Chapter 1, our motivation behind the statistical prob

lems considered in this thesis lies in the theory of demand systems and their ranks. In this 

chapter, we will give a short overview of demand systems, their ranks and related statistical 

work. By doing so, we want to  familiarize a more casual reader with this interesting milieu 

of Economic Theory and Statistics. We also want to show where our statistical models and 

problems fit in the earlier work on ranks of demand systems. The chapter is structured 

as follows. In Section 2.1, we define a demand system and describe its connections to the 

classical Economic Theory. Section 2.2 is on the rank of a  demand system and Section

2.3 concerns its implications. Finally, in Section 2.4, we describe earlier statistical work 

related to ranks.

2.1 What is a demand system?

We begin by defining a demand system.

D efin itio n  2.1.1 (Demand system) A demand system o f a collection of goods is a relation 

in which the amount or the quantity of each of the goods that a consumer is willing and 

able to purchase in a specified period o f time, is determined as a function o f the prices of 

all goods, the consumer’s total expenditure and possibly other determinants such as prices 

of related goods, tastes, demographic variables (e.g. the age o f a consumer, the number of 

children) and others.

7
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In other words, supposing th a t the number of goods in a demand system is J, denoting the 

prices of J  goods by the column vector p =  (p i,. . . ,  p j ) \  the quantity of J  goods purchased 

by the column vector q =  ( q \ , . . .  ,qj) ' .  the total consumption expenditure (income or cost, 

in short) by x  and other determinants by w, a demand system can be mathematically 

expressed as a functional relation

9 =

(  \ 
91

\ q J  }

^  0 lfo p ,w ) ^

 ̂ 9 j {x,p,w)  )

=  y(x,p,iu), (2 -1)

where g is some function. In  the sequel, we will often denote the vector (p, w) by z  and 

hence the demand system (2.1) by

q = g{x, z). (2.2)

An equivalent way to write a demand system (2.1) is in a budget share form. A budget 

share -yj, j  = 1 , . . . ,  J ,  for a  good j  is defined as

Vj  =
QjPj (2.3)

that is, as the expenditures on the j t h  good divided by the total expenditures (hence, the 

term “budget shares”). By using (2.1), the vector y  =  ( y i , . . . ,  y j ) 1 of budget shares can 

be expressed as

/

y  =

\

y  i

y j

( f l (x ,p,w) \

 ̂ f j {x ,p ,w)  y

(2.4)

where f j (x,p,  w) =  Qj(x,p, w)pj /x ,  j  =  1 , . . . ,  J ,  or, by denoting (x, w) by z, as y = f ( x ,  z ). 

Conversely, any relation (2.4) can be expressed as in (2.1) with gj(x,p,  w) = f j (x,p,  w)x /pj .
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Relation (2.4) is called a representation of a demand system in a budget share form . In 

most of the cases, we will use and work with demand systems in a  budget share form.

R em ark  2.1.1 Note that the budget shares yj, j  =  1 , . . . ,  J,  sum up to 1. This obser

vation, seemingly simple minded, has nontrivial implications in some statistical problems 

related to demand systems (in particular, the problem of estimation of rank studied in this 

thesis).

R em ark  2.1.2 In applications, J  goods in Definition 2.1.1 are taken as J  groups of similar 

goods, for example, food, clothing, transportation, health and others. Such grouping 

of goods allows, for instance, to avoid problems associated with availability of data or 

infrequencies of purchases. An interesting introduction and survey on statistical issues 

arising in applications of consumer demand systems can be found in Lewbel [65]. See also 

Poliak and Wales [80]. Some of these issues are also discussed in this chapter below.

Demand systems arise and are extensively studied in the classical Economic Theory 

(more precisely, consumer demand theory). Let u  be a utility function of a rational con

sumer. In Economic Theory, a  market demand system (demand system, in short) is defined 

as the rule g that assigns the optimal consumption vector q in the utility maximization 

problem to each price-income situation (x , p ), namely,

q = g{x,p)  =  argmax u{q) subject to pq < x.  (2.5)
<7 > 0

(Market demands are also called integrable or Walrasian or Marshallian or ordinary de

mands.) If a demand system q = g(x,p)  satisfies the relation (2.5), one says that it is 

derived through the utility maximization problem (UMP, in short) or, simply, through the 

utility maximization.

Term inology. In other words, we distinguish between any demand systems as in Definition

2.1.1 and demand systems derived through the utility maximization as in relation (2.5). The
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latter demand systems are of special interest in Economic Theory. The need to introduce 

and work with any demand systems as in Definition 2.1.1 lies in statistical applications 

where there is no point, a priori, to assume a  UMP derived structure on a demand system. 

In the sequel, by a “demand system” we will mean any demand system as in Definition

2.1.1 unless it is clear or mentioned in the text that we are in the context of Economic 

Theory and hence deal only with demand systems derived through UMP.

E xam ple 2.1.1 Suppose th a t a consumer’s preference ordering over market goods 91 and 

non-market goods 92 can be represented by a Cobb-Douglas utility function 14(9 1 , 9 2 ) =  

9?92_Q f°r some a  E (0,1). For this particular case the UMP can be written as

argmax 9 “ 92 °  subject to p\q\ + P2 Q2  =  x - (2-6)
(?1,?2)>(0,0)

Given variables 9  =  (9 1 , 9 2 ) and A, we can define the Lagrangian function for (2.6) as

£(<7* A) =  9?92- “ “  -*(pi9i +  P292  -  *). (2.7)

The Kuhn-Tucker conditions for (2.7) are

=  a q ^ ~ l q \ ~ a -  XP l  =  0 ,  (2 .8 )

=  ( l - a ) 9 ? 9 j “ -A p 2 =  0, (2.9)

=  Pi9i + P 292 -  x  =  0, (2.10)

for some A >  0. Dividing condition (2.8) by (2.9) and using the budget constraint (2.10), 

we obtain the following Walrasian demand functions

a x  , , (1 — a ) x  _  ,.
gi(x,p) =  —  and 9 2 (1 ,p) = ------------ . □  (2.11)

Pi P2

dC
dqi
dC
dq2
dC
d \
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Another way of capturing the consumer's problem of choosing the most preferred con

sumption bundle given prices and  income is through a problem dual to UMP, known in the 

economic literature as cost or expenditure minimization problem (CMP, in short). Instead 

of computing the maximal level of utility for given income and prices as in UMP, one first 

finds the minimum cost or expenditure, denoted by c(u,p), necessary to attain a  specific 

utility level u  a t given prices p, namely,

c(u,p) =  min pq subject to u(q) > u. (2.12)?>o

(The coordinate functions of the vector q m in im iz in g  (2.12) are called Hicksian or com

pensated demand functions and are denoted by hj(u,p), j  =  1 , . . . ,  J.)  Since for a utility 

maximizing consumer x  =  c(tt,p), one can next invert this relation to obtain the so-called 

indirect utility function u  =  v(x,p) .  The connection to the demand system (2.5) is then 

expressed through Roy’s identity (Roy [91]) by using the indirect utility function as follows: 

for all j  = 1 , . . . ,  J

One may obviously get the demand system in a budget share form from (2.13) by 

using relation (2.3). An alternative way, available in the economic literature, is to start 

with the cost function c(u,p) itself, take its logarithmic derivative with respect to prices 

d Inc(u,p) /d  Inp, and then substitute for u  the indirect utility function u  =  v(x,p),  that 

is,

. . . d lnc(u,p)
» = f i ( x ' p ) = - e t o t r

(2.14)
u=v(x,p)

A key result underlying the proof of (2.14) is the so-called Shephard’s lemma (see Shephard 

[96]). For more information on demand systems derived through UMP and CMP, see for

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

12

example Deaton and Muellbauer [24].

E x am p le  2.1.2 The CMP applied to Example 2.1.1 can be stated as

min P i9 i+ P 292 subject to g?gi-Q =  u. (2.15)
(<?l.92)>(0,0)

The Lagrangian function and the Kuhn-Tiicker conditions corresponding to (2.15) are then

£ (? , A) =  P i9 i +P292 -  A{q°q\~a -  u)

and

Ftr . ,
=  p i -  Xaqf  q \'*  =  0,dqi

=  P2 -  A(1 -  a)g?g^Q =  0,

dC 
d \ =  a - u  = 0 ,

respectively. Hence, the solution vector (9 1 , 9 2 ) for (2.15) are the Hicksian demand functions

'>,(u’p ) = “  M “ ,p) =  “  ( (1 ^ >Pl)  

and the corresponding cost function c(u,p) =  p\h\(u,p) +  P2/12(u ,p)  Is

c(u,p) =  oTQ(l -  a )Q-1up?p£_Q.

The demand system in a budget share form can now be obtained by using (2.14), namely,

d lnc(u ,p ) 
yi ~  d  In pi “  “

d In c(u,p)
92 =  a in p ,  = 1 ~ a -
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(Observe that this result also follows from (2.11) by using relation (2.3).) In other words, 

the expenditure on each good is a  constant fraction of income for any price vector p. A 

share of a  goes for the market goods and a  share of (1 — a) goes for the non-market goods. 

□

Many of the studied demand systems are derived through the utility maximization as 

in Example 2.1.1. Well-known examples, some of which also appear below in this thesis, 

are the class of demand systems of the Gorman polar form (GPF)

qj =  aj(p) +  bj(p)x, (2.16)

where aj and bj are suitable functions of prices, the class of quadratic expenditure demand 

systems (QES) of the form

Qj =  cj(p)x2 +  dj(p)x 4- ey(p), (2.17)

for some suitable functions Cj, dj and ej of prices, the class of demand systems o f the price 

independent generalized logarithmic (PIGLOG) form

yj =  aj(p) +  bj(p) Inx, (2.18)

the class of the quadratic almost ideal (QAID) demand systems of the form

Vj =  Cj(p) +  dj(p) Inx -+- ej{p)(Inx)2 (2.19)

and many others. (Observe that unlike (2.16) and (2.17), demand systems (2.18) and (2.19) 

are expressed in the budget share form.) Functional forms for demand systems, like those in 

(2.16)-(2.19), are interesting because they can be used as models in statistical applications. 

They can be also used, for example, to test whether consumers choose demands to maximize
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a  utility function (see Poliak and Wales [79] and Banks, Blundell and Lewbel [10]).

R em a rk  2.1.3 It is important to note that the functions of prices in (2.16)-(2.19) have 

special structures because the corresponding demand systems are derived through UMP. 

For example, one can show that the functions aj and bj in (2.18) are given by

, _ x dot(p) ln/3(p) > d/3(p) 1 . . .  _  dajp)  1
3 dpj  a(p) dpj f3(p) ’ 3 dpj  a (p ) ’

where a(p) and /3(p) are homogeneous functions of orders 0 and 1, respectively. On the 

other hand, from applications perspective, demand systems (2.16)-(2.19) are interesting 

even when corresponding functions of prices are arbitrary. For this reason, we will some

times continue to refer to  relations (2.16), (2.17), (2.18) and (2.19) as GPF, QES, PIGLOG 

and QAID demand systems, respectively, even when the functions of prices in these demand 

equations are arbitrary.

Finally, let us mention that most of the demand systems in Economic Theory as well 

as in applications are analyzed for a  fixed level of prices p , in which case they are known as 

Engel curves. An example of Engel curve, which by now is already classical, was introduced 

by Working [102] and developed by Leser [58] who postulated a  linear relation between the 

budget share of each good and the logarithm of total expenditure, that is,

tij =  a.j +  bj In x .

(It is a PIGLOG demand system for fixed prices p.) This relation, known also as the 

Working-Leser specification, was widely used in the work by Deaton, Muellbauer and oth

ers. Relations (2.16), (2.17) and (2.19), when p is fixed, are other examples of Engel 

curves.

R e m a rk  2.1.4 To avoid confusion, since a demand system can be expressed in the form 

of budget shares as in (2.4) or in the form of quantity of goods demanded as in (2.1), one
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always needs to keep in mind which of the two forms is meant when speaking about Engel 

curves. For example, the Engel curves of a  demand system yj =  a-, (with some constants 

a.j) in the budget share form are functions of a  constant level while the Engel curves of 

the same demand equation but in the form (2.1) are lines passing through the origin and 

having possibly different slopes.

2.2 Rank of a demand system

In this thesis, we focus on a  characteristic of demand systems called a  rank of a demand 

system. We will consider two types of ranks, namely, local and global ranks of demand 

systems. These ranks, generalized by Lewbel [63] from Gorman’s [41] work, are defined as 

follows. We work with demand systems in a  budget share form y  =  f ( x , z )  as given by 

(2.4).

D efin itio n  2.2.1 (Rank of demand system) Let z be fixed. The (local at z ) rank of any 

demand system

V =  / (* ,  z) =

f i{x,z)

(2.20)

is the dimension of the function space spanned, for fixed z, by the coordinate functions 

f j (x , z ) ,  j  = 1 that is, by the Engel curves of the demand system (2.20). The 

(global) rank of a demand system (2.20) is the supremum of its local ranks over all possible 

values of z.

Equivalently, a demand system has local rank R(z)  if there are R{z),  but not less, 

goods such that the Engel curve of any good can be expressed as a  linear combination of 

the Engel curves of those R(z)  goods. For example, a demand system with the Working- 

Leser specification of Engel curves yj  = aj 4- bj In x  has rank 2 unless, by using the fact
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YljVj  =  1, we have y, =  ay.

N otation. We will denote the local at z rank of a demand system (2.20) by

rk {/(-,*)}. (2.21)

Let R(z) = rk{/(•, z)} be the local rank of a demand system and R  = sup2f2(z) be its

global rank. Observe that, by Definition 2.2.1 and a  discussion following it, R(z)  and R

are positive integers between 1 and J , and that R(z) < R.  Observe also that, by Definition 

2.2.1, for fixed z ,

R(z)

Vj = f j i x i z) =  ^   ̂&jk{z)hk (x, z), j  — 1 , . . . ,  J, (2.22)
k =  l

where hk(x, z) are some functions and ajk are some weights, or in a matrix form,

R(z)

y = f ( x ,  z) = '*T ak(z)hk{x, z) = a(z)h(x,  z ), (2.23)
k=l

where

ak(z ) =

aifc(-z)
, h(x, z) =

hi{x,z)

 ̂ ajk(z) ^  ̂ hRW&iZ) j

and a(z) =  (a i(z ) ,. . . ,  a R(z)(z)). By Definition 2.2.1, relation (2.22) and (2.23) still hold 

when R(z)  is replaced by R  and where the matrix a and the vector h are defined in a similar 

way as for (2.22) and (2.23). Conversely, a  demand system y =  f ( x ,  z) can be always 

written in the form (2.22) or (2.23) with L < J  in the upper limit of the corresponding 

sums. The local rank of y =  /(x , z) is then the smallest such L  for which (2.22) or (2.23) 

hold for fixed z. The global rank is the smallest such L  for which these equations hold for 

all values of z. Let us state these facts as a lemma for later reference.
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L em m a 2.2.1 Let f ( x , z) be a J  x 1 vector of functions o f x  and z. Then, the local at z  

rank rk{/(-7 z)} is the smallest L  such that, for fixed z,

f ( x ,  z) =  a(z)h(x , z), (2.24)

where a(z) is a J  x L matrix o f functions of z and h(x,z)  is a L  x  1 vector of functions o f  

x  and z. The global rank supzrk{/(-, z)} is the smallest L  such that (2.24) holds for all z  

and x.

R e m a rk  2.2.1 Suppose th a t the rank of a demand system (2.20) is R < J . Then, the 

discussion above implies tha t the demand system can be expressed in terms of R  functions 

of prices and total income as compared to J  such prices in the  original representation (2.20). 

Hence, the rank lower than  J  indicates that there is redundancy in the representation of a  

demand system and, as a  consequence, that the demand system can be expressed by using 

fewer “parameters”. O ther implications of rank are discussed in Section 2.3 below.

While Definition 2.2.1 of ranks is stated in terms of the dem and system function f ( x , z ), 

the rank can be also characterized in terms of the cost function c(u,z)  in (2.12) when the 

demand system is derived through UMP. The proof of this characterization result can be 

found in Lewbel [63].

T h e o rem  2.2.1 An integrable demand system has (global) rank R  if  and only if  R  is the 

smallest integer such that the cost function c(u, z) is o f the form

c(u , z) =  B(u, <f>i(z),. . . ,  <f>R(z)), (2.25)

where u is a utility level, B  is some function and <f>\(z),__ , <(>r (z ) are some homogeneous

functions.

Theorem 2.2.1 is useful in Economic Theory because cost functions are often used to 

derive a demand system equation. In other words, the theorem shows that for a demand
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system to be of rank R , it has to be derived from a  cost function expressed in terms of 

R , but not less, so-called price indices <f>i(z) , . . .  Let us also mention that a result

(2.25) are replaced by the indirect utility function u(x, z) and the income x, respectively. 

We now illustrate the notion of a rank through an example.

E x am p le  2.2.1 Consider the PIGLOG demand system in (2.18) defined by

yj = CLj{p) +  bj(p) Inx, j  = 1 , . . . ,  J.

We can write it in a matrix notation as

( ai(p) blip)

where the matrix 0(p) is J  x 2 and the vector V(x) is 2 x 1. By Definition 2.2.1 and the 

discussion following it, the local rank of a PIGLOG demand system is the rank of the 

matrix 0(p) for fixed p. Hence, the rank of the demand system is either 1 or 2. If one 

assumes in addition that the PIGLOG demand system is derived through UMP, then one 

can show that the rank is necessarily 2. One way to argue this is to observe that the 

PIGLOG demand system can be derived from the cost function c(u,p) =  eu^a^/3(p) which 

involves two functions of prices, hence, by Theorem 2.2.1, leading to a  demand system of 

rank 2. □

2.3 Implications of rank

Although definition of rank may seem easy from a mathem atical point of view, it has 

many interesting and im portant implications in Economic Theory and applications. In 

this section, we will describe some of these implications in greater detail.

similar to Theorem 2.2.1 holds also when the cost function c(u, z) and the utility level u in

V =

\  aj ip)  bj{p) }

9(p)V(x), (2.26)
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One implication concerns restrictions on the ranks of particular classes of demand 

systems derived through UMP. Consider, for example, the class of the so-called exactly 

aggregable demand systems defined as follows.

D efin ition  2.3.1 (Exactly aggregable demand systems) A demand system is called exactly 

aggregable i f  it has the representation

y  =

/  \
y i

ii M
* f  ffik(z) >

Vk(x) =  0{z)V(x),

<y j  j

k=l
 ̂ 0Jk(z) j

where 6{z) =  (6jk(z)) is a J  x d  matrix o f functions of prices (and demographic variables), 

and V{x)  =  (V)t(x)) is a d x  1 vector o f functions o f total income.

As shown in Gorman [41], if an exactly aggregable demand system is derived through UMP, 

then its rank is necessarily less than or equal to 3. (Russell and Farris [92] have a curious 

mathematical connection of this result to  Lie groups.) Gorman’s result is interesting, for 

example, for the following reason. Since exactly aggregable demand systems have nice 

theoretical properties related to aggregation and representative consumer, and nest many 

well-known examples of demand systems, they are widely used in applications. Therefore, 

it is interesting to see whether the properties of demand systems observed in practice are 

consistent w ith those derived in Economic Theory. In other words, if an exactly aggregable 

demand system model is used in applications and if it is found to be of rank greater than 3, 

then one may question whether consumers indeed maximize a utility function as is assumed 

in Economic Theory. (This issue is further discussed in Section 2.4 below.)

R em ark  2 .3 .1  Exactly aggregable demand systems (2.27) are also of special interest in 

the context of this thesis. As can be seen from Section 3.1 below, one of the statistical 

models used in this thesis, in fact, coincides with the class of exactly aggregable demand 

systems.
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R em ark  2.3.2 Another example of a  class of demand systems with restrictions on their 

ranks is the class of deflated income demand system introduced by Lewbel [61]. Deflated 

income demand systems are defined by

y = c ( z ) A ( < F l )  (2,28)

where c(z) is a  J  x  d  m atrix of functions of prices and demographic variables, t(z) is a real

valued function and h(xf t (z))  is a d  x 1 vector of functions of the deflated income x/t{z) .  

Lewbel [61] proved th a t deflated income demand systems can be written as transformations 

of exactly aggregable systems. As a consequence, Lewbel was able to conclude th a t deflated 

income demand systems are necessarily of rank less or equal than 4.

Another implication is that the rank provides a  convenient characteristic o f demand 

systems in Economic Theory according to which demand systems can be classified, dis

cussed and analyzed further. For example, a  demand system has rank 1 if and only if its 

Engel curves for any fixed price regime axe expressed as

yj = ajhi (z) ,

where hi(z) is some real-valued function which does not depend on j .  Since the budget 

shares sum to one for all z, the function fii(z) is necessarily independent of z. Then, a 

demand system has rank 1 if and only if its Engel curves are constant functions. Another 

way to express this fact is to say that the demand functions are derived from so-called 

homothetic preferences, th a t is, consumers w ith different incomes facing the same prices 

will demand goods in the same proportions.

Similarly, a  dem and system (when derived through UMP) can be shown to be of rank 

2 if and only if it is generalized linear (GL, in short) as introduced by Muellbauer [74, 75].
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A demand system is GL if it can be expressed as

yj =  t{x,z)a.j{z) +  bj(z),  (2.29)

where aj(z) =  0, (z) =  1 and £ is a suitable function. Examples of GL demand

systems (2.29) are the G P F  demand system in (2.16), the PIGLOG demand system in 

(2.18) and also, not previously mentioned, so-called almost ideal (AIDS), translog, quasi- 

homothetic, linear expenditures and fractional demand systems. GL systems are also of 

interest for other reasons than  being the only demand systems of rank 2. Muellbauer 

[74] showed that the GL is a  necessary and sufficient condition for aggregate demands to 

be consistent with representative agent models. Freixas and Mas-Collel [35] showed that 

GL (defined in their paper as no torsion condition) is a  necessary condition for aggregate 

demands to exhibit the weak axiom of revealed preferences (WARP).

An example of a dem and system of rank 3 is a  demand system quadratic in total 

expenditures (QES). QES demand systems were introduced by Poliak and Wales [78] and 

Howe, Poliak and Wales [52] in a first attem pt, to account for quadratic expenditures 

effects in demand systems. Another example is the quadratic logarithmic demand system 

(QUAIDS) of Banks, Blundell and Lewbel [10] which extends AIDS demand system (see 

Deaton and Muellbauer [24]) by adding to it a  quadratic logarithmic term of income and 

prices. QUAIDS allows goods to  move from luxuries to necessities at different levels of 

income, providing the demand system with more flexibility to describe consumer’s behavior. 

Yet another example of dem and systems of rank 3 is the almost ideal quadratic logarithmic 

demand systems (AIQL) of Fry and Pashardes [36]. Finally, an example of a demand 

system of rank 4 is the nearly log polynomial (NLP) demand system proposed by Lewbel 

[67]. NLP is consistent w ith the utility maximization and nests the popular log linear and 

log quadratic specifications. These systems are particularly suitable for demand systems 

with a large number of goods.
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Some further implications of rank, for example, in connection to separability of demand 

systems, production models and welfare analysis, are discussed in Lewbel [63] (see also 

references therein).

R e m a rk  2.3.3 Interestingly, the notion of rank as defined in Definition 2.2.1, turns out 

to be also relevant for portfolio separation in asset demands. Cass and Stiglitz [15] define 

the generalized portfolio separation of order R  as the property that, for any value of the 

agent’s total initial wealth, the agent’s demand for J  securities can be satisfied by the 

purchase of R  < J  mutual funds (R  portfolios), where a  m utual fund is defined as a fixed 

weight basket of securities. Lewbel and Perraudin [68] showed tha t the separation property 

can be viewed as a rank restriction on the space of demand for risky assets considered as 

functions of the available rates of return for agents with the same preferences but different 

wealth. In other words, the portfolio fund separation of order R  is equivalent to the fact 

th a t the demand system

y  =  /(x , z)

for risky assets, where y is a  vector of expenditures for J  assets of an agent, x is the total 

wealth of an agent and z  is a  vector of gross returns on one dollar’s worth of J  assets, has 

rank R.

2.4 Statistical and empirical studies of ranks

In statistical applications, a  demand system model is no longer deterministic as in (2.4) 

but it is now stochastic. The basic assumptions are that a  sample (or independent ob

servations) (Yi, Xi, Zi), i =  I , . . .  , N ,  of the budget shares Yi, the total incomes Xi  and, 

possibly, the prices and demographic variables Z,- of N  consumers is available, and that 

these observations are related through some functions /  as

Yi = f ( X i , Z i) + e i, i = l , . . . , N ,  (2.30)
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where e; axe some noise variables. (Hereafter, in order not to confuse deterministic and 

stochastic variables, we denote the former in lowercase and the latter in capitals.)

The function /  in (2.30) can have a parametric form, for example, ignoring the variable 

2 , the form f ( x )  =  ( / i (x ) , . . . ,  f j ( x ) ) '  w ith

f j (x )  =  a.j +  bj In a:,

where aj  and bj are unknown parameters. Alternatively, one could let f j (x )  have an 

unrestricted form. In the former case, one says that a demand system model (2.30) is 

parametric and in the the latter case, one says that it is non-parametric. (The term 

semi-parametric model refers to a  model with some features of both param etric and non- 

parametric models, for example, our (SPF) model introduced in Section 3.1 which involves 

a particular structural form of /  and also some unknown functions.)

The sample (Yi, X i, Zi) is taken from one of the expenditure surveys conducted by gov

ernment or private agencies. The most popular and widely used surveys axe the Interview 

Survey Public-Use Tapes of the Consumer Expenditure Surveys (CEX, in short) published 

by the Bureau of Labor Statistics in the United States and Family Expenditure Surveys 

(FES, in short) conducted by Department of Employment in the United Kingdom. For a 

description of FES data, see for example Hildenbrand [51] (see also Remark 2.1.2). Other 

surveys available to researchers cover, for example, countries like France, Canada and New 

Zealand. It is important to note that none of these surveys include the price data  (they 

may include, however, the data concerning demographic variables). We will discuss the 

price data at the end of this section.

There is an extensive literature on what models of demand system (2.30) are best to use 

for data sets at hand. A general belief is that, for a  fixed level of prices and for homogeneous 

households, the Working-Leser specification yj =  aj +  bj Inx gives a  good fit for certain 

goods, in particular for the budget share of food and fuel. Other goods, such as clothing or 

alcohol, are believed to follow Engel curves of the form yj =  aj 4- bj Inx  4- Cj<f>(x) for some
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function <f> of to tal income (e.g. <f>(x) =  (Inx)2 or 1 /x). (The reader interested specifically 

at the problem of model specification and fitting may refer to some papers given below.)

Our focus here is on estimation of local or global ranks of a demand system (2.30) 

given a  sample of observations (Yi, Xi,  Zi).  The local rank of (2.30) is defined as the local 

rank of the corresponding deterministic demand system y  =  /(x , z), that is, as rk{/(-, z)} 

for fixed z  with the notation of Section 2.2. The global rank of (2.30) is defined again 

as the maximum of all local ranks, that is, sup2 rk{/(-, z)}. We will now briefly describe 

the earlier statistical work related to rank estim ation in parametric and non-parametric 

models of demand systems. This will then bring us naturally to a motivation behind the 

problems considered in this thesis.

Parametric demand systems. The author is aware only of a few studies aimed at a direct 

estimation of rank in a  demand system (2.30) of a  parametric form. (This is partly due, 

we feel, to the fact that rank estimation techniques became available only recently.) Most 

of the studies in a  parametric setting are only related to rank estimation. For example, the 

papers by Leser [58] and Poliak and Wales [79] can be considered as the first rank studies. 

Leser [58] found th a t the non-linear Engel curve specification

c *yj = aj + bj In x  -F — (2.31)•Z?

is superior to the classical Leser-Working specification yj = aj +  fry Inx. This finding 

indicates a  rank possibly greater than 2 in a  dem and system (2.31) (in other words, Cj 0). 

In the same vein, Hausman, Newey and Powell [50] used a parametric model

Yji = aj +  bj In Jfj +  Cj(]nXi)^ 4- dy(In-X,-)** +  cy,-,

where j  =  1 , . . . ,  J  correspond to the budget shares and i  =  1 , . . . ,  JV correspond to the 

elements of the sample, to fit CEX data. By using either instrumental variables or ordinary
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least squares, the authors found that the ratios C j / d j  are statistically the same for different 

j 's  which is an indication of rank less or equal than 3. (In particular, this result is con

sistent with that of Gorman [41] discussed in Section 2.2.) Some other papers concerning 

estimation of rank in parametric models are Grodal and Hildenbrand [45], Kneip [55] and 

Nicol [76]. Since the paper by Nicol [76] is particularly relevant to this thesis, we will come 

back and discuss it in greater detail below.

Non-parametric demand systems. In a  non-parametric setting, the (local) rank of a

demand system was first estimated by Lewbel [63]. For a fixed price regime (in which case

we can suppress the dependence on z), if a demand system (2.30) has rank R, then by 

Lemma 2.2.1,

Yi = ah(Xi) + e i ,

where a is a G x R  m atrix and h(x)  is a R  x 1 vector of functions of total income. Suppose 

that Q{x) is a  T  x 1 (with T  > R)  vector of some rich enough family of functions of total 

income, for example, Q(x) = ( l ,x , ln x ,x 2, l /x ,x ln x ) .  Then, the R x T  matrix

M  = EYiQ iXi)' =  a(Eh{Xi)Q{Xi) ' ) ,  (2.32)

which always has rank equal or less than R,  is likely to be of rank R  and hence, R  can 

be deduced from the rank of the matrix M.  One can estimate the rank of M  by using its 

estimator

—  1 N
m = - Y .y‘QW' <2 -3 3 >

i= l

along with some method of rank estimation available in the literature, for example, the 

LDU test of Gill and Lewbel [38] (with the correction in Cragg and Donald [19]) or the 

minimum-^2 test of Cragg and Donald [20]. We will discuss these and other rank tests in 

Chapter 5 in connection to  one of the problems studied in this thesis. Lewbel [63] applied
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the procedure described above to CEX and FES data, and found a  strong evidence of rank 

3 in both data sets. Interestingly, this finding is consistent with Gorman’s result on rank 

3 for exactly aggregable demand systems (see Section 2.3).

A rank test for a non-parametric model, which is more accurate and more powerful than 

that of Lewbel [63] described above, is due to Donald [28]. Suppose a fixed price regime as 

in Lewbel [63]. The basic idea of Donald [28] is as follows. First, drop one budget share of 

goods from the analysis and consider the reduced demand system

Yi =  F{X i)  +  Ut, t =  l , . . . ,J V , (2.34)

where F(x)  is a G  x 1 vector (with G = J  — 1) and C/, are noise variables. (We use the 

same notation 3  ̂for reduced collection of budget shares for convenience.) Unlike in relation 

(2.30), where budget shares in Yi add up to 1 and hence impose singularity restrictions on 

the variance-covariance matrix of e,-, one may now suppose that the variance-covariance 

matrix E of I/,- is non-singular. This is one of the assumptions made by Donald [28]. 

Second, one may show that the rank rk{/(-)} of the original demand system y  =  f (x)  is 

L -1-1, where L  is the smallest integer such that

F(x)  =  c +  A H ( x )  (2.35)

for some G x l  vector c, G  x L  matrix A  and L  x 1 vector H (x ) .  Moreover, the condition 

(2.35) can be seen to be equivalent to the fact that the G  x G  matrix

r *  =  E w ( X i ) (F (X i )  -  E F (X i ) ) (F (X i )  -  E F ( X i ) ) ’, (2.36)

where w(x) > 0 is a suitably chosen weight function, has G — L  zero eigenvalues. This 

suggests that, the rank rk{/(-)} can be deduced from the eigenvalues of some estimator 

Tu, of the matrix T^,. Donald [28] considered two types of estimators r„,, a  series based
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estimator and a kernel based estimator. For example, the kernel based estim ator is defined 

as

1 N — -  
Fw = ~N (N  -  1) ^ {Yi ~  Y) (Yj  ~  Y ^'K ^ Xi  ~  X i )* (2.37)

where Y  =  N ~ l YliLi ** *s fcbe sample mean, Kh(-) =  h~mK ( h ~ 1-) is a  scaled kernel 

function and h >  0 is a bandwidth. By using the so-called Fujikoshi expansion techniques 

for eigenvalues of random matrices, Donald [28] established asymptotic laws for eigenvalues 

of TujE- l , where E, an estimator for the variance-covariance matrix E , plays the role of a 

normalization, and then developed statistical tests to determine the rank rk{/(-)}. When 

applying these tests in practice, Donald found a strong evidence of rank 3 in the CEX 

data. Finally, in the case of non-parametric model, let us also mention the papers by 

Lyssiotou, Pashardes and Stengos [71, 72]. These authors extend the work of Donald [28] 

by semi-parametrically controlling for variations in demographic variables.

R em ark  2.4.1 Since demographic variables have been found to be im portant determi

nants in both theoretical and empirical work on demand systems and  their ranks, they 

deserve some further discussion. We focus here on demographic variables and ranks of de

mand systems. (O ther issues arising in connection to demographic variables, for example, 

how to incorporate them into theoretically reasonable demand systems, are discussed in 

Poliak and Wales [80] and Lewbel [65].) Many empirical studies in dem and systems and 

their ranks, for example, the above mentioned Lewbel [63], Banks et al. [10], Donald [28] 

and Hausman et al. [50], were based on demographically homogeneous d a ta  sets and hence 

the problem of controlling for demographic variations in preferences did not arise. The 

pre-selection, however, was done at the expense of a  sample size and also did not allow to 

evaluate welfare analysis in households o f minority groups. These problems raised a need 

to investigate the effects of household heterogeneity. Such studies were undertaken, for 

example, in Lyssiotou et al. [71, 72] and Nicol [76]. Lyssiotou et al. [71, 72] considered the
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model Yi = aZi  4- F(Xi)  4- where Zi is a  vector of demographic characteristics taken 

as dummy variables, possibly correlated w ith total income. By using a nearest neighbor 

method proposed by Estes and Honore [30] and Yatchew [103], they obtained an estimator 

a  for a  and hence were able to remove heterogeneity from Yi by subtracting from it SZ,-. 

After semi-parametrically controlling for heterogeneity, Lyssiotou et al. [71, 72] applied the 

Donald’s [28] rank test to FES data. They found that taking into account for preference 

heterogeneity gives support for rank 3 of a  demand system and that the exclusion of het

erogeneity would make the rank estimator biased upwards. In another work, by analyzing 

CEX data, Nicol [76] found that age of head, labour force participation, vehicle ownership 

and tobacco consumption are important determinants of demand systems. Finally, let us 

mention some studies, e.g. Grodal and Hildenbrand [45] and Kneip [55], tha t use large 

samples of d a ta  but fail to control for heterogeneity. Their findings, not surprising in view 

of the work by Lyssiotou et al. [71, 72], point to higher ranks (typically between 4 and 6).

In all of the work on ranks thus far (with an exception of Nicol [76] discussed below), 

it is assumed that consumers face identical prices. This assumption is not realistic. For 

example, CEX data used in applications covers households across all the United States 

where prices of goods are clearly heterogeneous. In the same vein, most of the work on rank 

either concerns households with homogeneous demographics or ignores them altogether (see 

Remark 2.4.1 above). In the former case, a pre-selection is done, for example, a t the expense 

of the sample size while, in the latter case, the assumption of homogeneous demographic 

is simply not realistic. Our goal in this thesis is then to extend some problems on rank 

estimation discussed above to the situations where variations in prices (or also demographic 

variables) are taken into account. As mentioned in the introduction (see Chapter 1), we will 

provide statistical tests to determine the local ranks in two types of demand systems given 

by the semi-parametric factor relation Yi =  0(Zi)V(Xi)  4- e,-, where 6{z) is an unknown 

matrix and V  (x) is a  known vector, and demand systems given by the non-parametric 

relation Yi =  f ( X i ,  Zi) 4- e*, where f (x ,  z) is an unknown vector. In order to do so we will
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consider two statistical models, namely a semi-parametric factor (SPF) model and a  non- 

parametric (NP) model, and study problems related to rank estimation in the two types 

of demand systems above. The (SPF) and (NP) models, related problems and connections 

to ranks of demand systems are discussed in the next chapter.

R em a rk  2.4.2 The work closely related to ours, is a  recent paper by Nicol [76]. Nicol 

[76] proposed and tested a parametric model of demand systems which takes into account 

variations in prices. To our knowledge, this paper is the first attem pt to deal with price 

changes across consumers. It is relevant to this thesis for a  number of reasons. First, by 

using the American Chamber of Commerce Research Association (ACCRA) data, Nicol [76] 

created a unique price data  set to go with the CEX data. Such data sets were not available 

or used before, partly owing to the problem that inter-regional price data is not published 

by government agencies. The ACCRA data mentioned above comes from private sources 

and contains indices for a range of goods and services (namely, housing, utilities, grocery 

items, transportation, health care and miscellaneous goods) in about 300 cities across the 

United States. See Table A l on p. 288 in Nicol [76] or Table 7.1 in Section 7.1 below 

to get a  feeling for the price data provided by ACCRA. It is somewhat striking to see to 

what extent the prices of goods are different in various locations across the United States. 

(For use of ACCRA data  in other applications, see for example Frankel and Gould [34].) 

Second, Nicol [76] found evidence that the presence of price variations affected the rank 

of demands. Test results ignoring these variations indicated demands of rank 3 whereas 

those taking price variations into account supported the rank 2 hypothesis.
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Two Models

In this chapter, we introduce two models and discuss related problems which are studied 

in this thesis. We also state some assumptions on these models which will be used in 

the following chapters. The two models are a  semi-parametric factor model considered in 

Section 3.1 and a non-parametric model considered in Section 3.2. Their connection to the 

theory of demand systems, being nontrivial, is explained in Section 3.3.

3.1 Semi-parametric factor model

Let (Xi,  Zi) £  R" x Rm be independent variables and Yi €  be response variables 

explained by (Xi,  Zi). In a  semi-parametric factor model, we will suppose that the relation 

between the variables Yi and (Xi, Zi) is given by

Yi =  e( Zi ) V(Xi )  +  Ui, i = l , . . . , N ,  (SPF)

where N  is the number of observations, 0(z) is an unknown G  x d matrix of functions of 

z, V(x)  is a  known d x 1 vector of functions of x  and Ui is a  G  x 1 noise vector. Further 

assumptions on the variables X i, Zi and Ui, and on the functions 0  and V  are stated 

below.

E x am p le  3.1.1 By taking n  =  1, fixed d > 1 and a vector V(x)  =  (1, In x ,. . . ,  (lnx)rf_1), 

a (SPF) model becomes

Yij =  ejx(Zi) + 0j2(Zi) In Xi  + - - -+ 6jei(Z i) (In Jf,)d_ 1 +  Utj , j  = l , . . . , G ,

30
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where Yi =  (Y h,. . . ,  Y^g)', Ui =  {Un, . . . ,  UicY and 0 (z ) =  {6jk{z ))- Such models axe of 

interest in the theory of demand systems.

We will consider two types of problems related to (SPF) model, which we will refer to 

as local and global rank tests. Let rk{0(z)} denote the rank of the m atrix 0(z).

Local te s ts  fo r S P F  m odel. For a fixed 1 <  L < min{G, d} and z, to test the hypothesis 

H0 : rk{0(z)} <  L, against the alternative H i : rk{0(z)} >  L, as well as to determine 

rk {©(z)}-

G lobal te s ts  for S P F  m odel. For a fixed 1 <  L  <  min{G, d}, to test the hypothesis 

Ho : sup2rk{0(z)} <  L, against the alternative H i : sup2rk{0(z)} >  L, as well as to 

determine the global rank sup2rk{0(z)}.

The motivation behind these tests, explained in Section 3.3 below, lies in the theory of 

demand systems and their ranks. Local tests for (SPF) model are studied in Chapter 5 

and global tests for (SPF) model are discussed in Chapter 6.

We now state  assumptions on the variables Xi, Zi and Ui, and on the functions 0  and 

V  used in local tests. We will assume some of the following.

A ssum ption  (S P F ) L I: Suppose that (A ,,Z t) e  Rn x Rm, t =  1 are i.i.d.

random vectors such that the support of {Xi, Zi), denoted by H x x H z, is the Cartesian 

product of compact intervals 'Hx =  [<*i, 6j] x • • ■ x [a„, 6n] and *HZ =  [ci, di] x • • • x [cm, dm\, 

and {Xi, Zi) are continuously distributed with a density p{x, z) which has an extension 

to Rn x R17* with s > r  continuous bounded derivatives. (The parameter r  is defined in 

Assumption (SPF) L5 of Section 4-1-)

ASSUMPTION (S P F ) L2: Suppose that the noise vectors Ui, i =  1 , . . . ,  N , are i.i.d.
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random vectors, independent o f the sequence (X,-, Z ,) and such that E(U i \X t , Z{) = 0 and

A SSU M PTIO N  (SPF) L3: The function  © : H z —> I R ^  is such that each o f its component 

functions has an extension to K™ with s > r  continuous bounded derivatives. Each of the 

functions in a vector V(x) has an extension to R71 which is bounded.

A s s u m p t i o n  (SPF) L4: The d x  d matrix

where p(z) and p(x,z)  are the densities o f Z \  and (X i ,Z i ) ,  respectively, is positive definite 

(invertible).

R e m a rk  3.1.1 Assumptions (SPF) L1-L3 are in the spirit of those used by Donald [28] 

in connection to non-parametric rank estimation.

R e m a rk  3.1.2 We supposed in Assumption (SPF) L2 that the variance-covariance ma

trix of Ui is constant for different values of X i and Z{. A more general assumption is

where E(-, -) is some function. The noise satisfying (3.3) is called heteroskedastic and that 

satisfying (3.1) is called homoskedastic. In fact, some of our results for a  (SPF) model 

with a homoskedastic noise, when slightly modified, will hold for a  (SPF) model with a 

heteroskedastic noise as well. We will indicate in the sequel where this is so.

E(UiU'\Xi,  X j ,  Z„ Zj)  = <
0 i f i ^ j ,  

E if  i  =  j,
(3.1)

where E is a G  x G positive definite matrix. Suppose also that E\Ui\A <  oo.

Q(z) = p ( z ) E ( V ( X l ) V ( X l)'lZl = z)

f  V{xi)V(xi ) 'p{xu z)dx 
J  R»

(3.2)

0 if z #  j ,

E (X u Zi) if t =  i ,
(3.3)
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3.2 Non-parametric model

As in the (SPF) model in Section 3.1, consider independent variables (X i , Zi) and response 

variables Yi. In a non-parametric model, we will suppose that the relation between the 

variables Yi and (Xi, Zi) is given by

Yi =  F(Xi ,  Zi) + U U i = l , . . . , N ,  (NP)

where N  is the number of observations, F( x , z )  =  (F\(x, z ) , . . . ,  Fg (x , z))'  is an unknown 

G x  1 vector of functions of x  and z, and Ui is a  G x 1 noise vector. Further assumptions 

on the variables Xi, Zi and Ui, and the function F  can be found below.

To state the problems related to (NP) model, we need the following definition.

D efin itio n  3.2.1 (Adjusted rank) The adjusted rank of a G x  1 vector F(x , z ) ,  denoted 

by

adrk{F(-,*)}, (3.4)

is the smallest integer L  € NU {0} such that, fo r  a G x  1 vector c(z), a G x  L matrix A(z)  

and a L x  1 vector H(x,  z),

F( x , z )  =  c(z) -F A(z)H(x, z ) .  (3.5)

Observe from Lemma 2.2.1 that without the additive term c(z) in (3.5), Definition 3.2.1 

is that of the rank rk{F(-, z)} defined in Section 2.2. (Thus, the name “adjusted rank” .) 

The motivation behind Definition 3.2.1 and the problems stated below will become clear 

in Section 3.3.

We will consider the following two problems related to (NP) model.
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Local te s ts  for N P m o d el. For a fixed 0 < L  < G and z, to test the hypothesis 

Ho : adrk{F(-,z)} < L, against the alternative H i : adrk{F(-,z)} > L, as well as to 

determine adrk{F(-, z)}.

G lobal te s ts  for N P m odel. For a fixed 0 < L  < G, to test the hypothesis H q : 

sup.adrk{F(-,z)} <  L, against the alternative H \ : sup2adrk{F(-,z )} > L, as well as to 

determine the global adjusted rank sup2adrk{F(-, z)}.

Local and global tests for (NP) model are explored in Chapters 5 and 6, respectively. 

Finally, we state assumptions on the variables X i ,  Zi and Ui,  and on the function F  used 

in local tests.

A s s u m p t i o n  ( N P )  L I :  Suppose that { X i ,  Z i )  6  R "  x  R ”1, i =  1 are i.i.d.

random vectors such that the support of {Xi, Zi),  denoted by "Hx x H z, is the Cartesian 

product of compact intervals and { X i ,  Z i )  are continuously distributed with a density p{x, z) 

which is bounded below by a constant and has an extension t oK*x  Rm  with s > r  continuous 

bounded derivatives. (The parameter r  is defined in Assumption ( N P )  L 4  of Section 4-1.)

A SSUM PTION (N P) L2: Suppose that Ui, i  =  1, — ,N , are i.i.d. random vectors, 

independent of the sequence {Xi, Zi) and such that EUi =  0 and EUiU[ — E, where E is a 

positive definite matrix. Suppose also that E\Ui\4 <  oo.

ASSUM PTION (N P) L3: The function F  : H x  x W-z is such that each o f its com

ponent functions has an extension to R" x Rm with s > r  continuous bounded derivatives.

R e m a rk  3.2.1 Assumptions (NP) L1-L3 are similar to those used by Donald [28]. Ob

serve also that, according to Assumption (NP) L3, the function F  in (NP) model is assumed 

to be smooth.
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3.3 Connections to demand systems

We will now explain how the models and problems introduced in Sections 3.1 and 3.2 are 

related to demand systems and their ranks. In Section 3.3.1, we consider the case of a  

semi-parametric model and, in Section 3.3.2, we deal with a non-parametric model.

3 .3 .1  T h e  ca se  o f  s e m i-p a ra m e tr ic  f a c to r  m o d e l

Consider first (SPF) model introduced in Section 3.1. In applications, we would like to 

think of it as a  model for demand systems where the variables Zi and Yi denote the 

total income, prices (or demographic variables) and shares of goods corresponding to the 

ith  consumer. Moreover, since our focus is on ranks of demand systems, we would like to 

determine the rank of a  demand system given by a (SPF) model, namely, rk{F(-, z)} where 

F (x , z) =  ©(z)V(x). In that case, the following elementary lemma may seem to explain 

why local and global tests stated in Section 3.1 are of interest.

L em m a 3.3.1 Consider a demand system y  =  F (x , z) =  ©(z)F(x), where ©(z) is a 

G x d matrix and V(x) is a d  x 1 vector. Suppose that the vector V(x) consists of linearly 

independent functions. Then, for fixed z,

rk{F(-, z)} =  rk{©(z)}, (3.6)

where rk{©(z)} stands for the rank of the matrix ©(z).

PROOF: The proof is elementary but it is included for the sake of completeness. Let R(z)  =  

rk{F(-, z)} and L(z)  =  rk{@(z)}. By the definition of rk{F(-,z)}, there are G — R(z)  

elements of a  vector F(x, z) =  0(z)V(x) that can be expressed as linear combinations of 

the rest R(z)  elements of F(x, z). Supposing without loss of generality that these are the
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last G — R(z)  elements of F(x ,  z),  we obtain that, for i =  R(z)  -F 1 , . . . ,  G,

R(z)

OMzWtix)  +  - - • +  did(z)Vd(x) =  £  Cik(z)(ek l (z)Vi(x) +  • - • +  0kd(z)Vd(x)), (3.7)
k = l

where 0(z) =  (Oij(z)), V(x)  =  (V{(x)) and Cij(z) are some functions. Since the functions 

Vi(x) , . . . ,  Vd(x) are linearly independent by the assumption, relation (3.7) implies that

Oij(z) =  cn{z)exj{z) +  - • • +  CiR{z)(z)0R{z)j{z),

for i =  R(z)  + 1 , . . . ,  G and j  =  1 , . . . ,  d. This shows that L(z)  < R{z)  since G — R(z)  rows 

of the matrix 0(z) can be expressed as linear combinations of the other R(z)  rows. To 

obtain the inverse inequality R(z)  < L(z),  observe that G(z) =  ©i(z)© 2 (z) where ©i(z) 

is a  G x L(z)  matrix and ©2 (*) is a  L(z)  x d matrix. Then, y  =  F(x , z )  =  0(z)V (x) =  

©i(z)(© 2 (z)V(x)). Since ©2 (z)V(x) is a L(z) x  1 vector, we obtain from Lemma 2.2.1 that 

R(z) < L{z). Hence, L{z)  =  R{z)  which concludes the proof of (3.6). □

Lemma 3.3.1 may suggest that local tests formulated in Section 3.1 allow to determine 

the local rank of a demand system given by (SPF) model. This is, however, not true under 

the assumptions made on (SPF) model in Section 3.1. Since the budget shares of goods in 

Yi add up to 1, the variance-covariance matrix of the noise vector Ui is necessarily singular 

which violates Assumption (SPF) L2 stated in that section. This problem can be dealt 

with in a number of ways. One way would be to eliminate the non-singularity condition 

on E from our assumptions. This approach, however, would require extending most of the 

statistical work on estimation of rank to situations allowing for singular variance-covariance 

matrices. Another way, which we adopt here, is to keep the non-singularity assumption, 

but make appropriate modifications when applying our results to  demand systems.

In applications, the idea is to drop a  share of good from the analysis, in which case 

the summing up condition becomes no longer relevant, and then determine the rank of
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a demand system from the rank of a  reduced demand system estimated by using tests 

formulated in Section 3.1. This procedure, summarized in greater detail below, is based on

the following elementary result. To state this result, we need to introduce some notation.

Let

y = f {x , z )  = 9(z) V  (x ) (3.8)

be a demand system with a  J  x d  matrix 8(z) and a d x l  vector V(x).  Let also

y U) =  F U)(x, z) =  GU)(z)V(x),  (3.9)

j  =  1 , . . . ,  J,  be a  reduced demand system obtained by dropping the fcth share of goods 

from the demand system (3.8). (In other words, F ^ \ x , z )  is the vector f { x , z )  without its 

yth element and 0^O(z) is the matrix 0(z) where the j t h  row is eliminated.)

L e m m a  3.3.2 With the above notation, i f  J  > d and a vector V  (x) consists o f linearly 

independent functions, we have

rk{/(•,*)} =  rk{0(z)} =  m j« rk{©W)(«)} =  miuc rk{F W)(-,z)>. (3.10)
1 < J <  J  1 < J <  J

PROOF: The first and the th ird  equalities follow from Lemma 3.3.1. We thus only need to 

show the second equality in (3.10). Since G ^ ( z )  is obtained by eliminating a  row in 0(z),  

we have rk{0(z)} >  rk{©k)(z)} for all y =  1 , . . . ,  J ,  and hence

rk{0(z)} >  max rk{©^^(z)}. (3.11)
l < j < J

On the other hand, setting L{z)  =  rk{0(z)}, there is a L{z)  x L(z)  sub-matrix 9(z) of 0(z) 

such th a t the determinant of 0(z) is not zero. Since L(z) < d < J ,  there is a  row jo =  j ( z )
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such that 6(z) is a submatrix of © ^ ( z ) .  It follows that

max rk{©(j)(*)} >  rk{©(jo)(z)} >  L(z) =  rk{0(z)}, (3.12)
i <J<J

since the matrix © ^ ( z )  has a  L{z) x L(z) submatrix with a nonzero determinant. The 

second equality in (3.10) now follows from (3.11) and (3.12). □

R e m a rk  3.3.1 Taking the maximum of ranks rk{0^^(z)} in (3.10) is crucial. Without 

the maximum, the second relation in (3.10) does not hold in general, that is, it is not 

true that rk{0(z)} =  rk{© ^(z)}  for any j .  Consider the following elementary example. 

Suppressing the dependence on z (which is fixed anyway), consider the 4 x 3  matrix

f  1/2  1/2  1/2  >

o =  1/2  1/2  1/2

0 - 1 1  

 ̂ 0 0 - 2  J

and the corresponding reduced matrices

f 1/2 1/2 1/2 > f 1/2 1/2 1/2 '

IIw<DII 0 - 1 1 , 0<3> = 1/2 1/2 1/2

.  0 0 ~ 2 > I  ° 0 ~2 )
and defined in a  similar way. Then, rk{0(z)} =  3, and rk { 0 ^ (z )}  =  rk {0 ^ (z)}  =  3 

and rk{©(3)(z)} =  rk { 0 ^ (z )}  =  2. Observe that rk{0(z)} #  rk { 0 ^ (z )}  when j  =  3,4, 

but rk{0(z)} =  m axi<j<4 rk { 0 ^ (z )} . Observe also that the entries in the first column of 

0 add up to 1 and those in the  other two columns add up to 0. Hence, in particular, for 

the chosen 9, the shares of the demand system y  =  9V(x)  add up to 1 as long as the first 

coordinate function of a  vector V(x)  is identical to 1.
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E s tim a tio n  o f ra n k  using (S P F ) m o d e l. Based on Lemma 3.3.2, we propose to esti

mate the local rank R(z) of a demand system

Yi = ff(Zi) V ( X i) + ei, i =  l,. .. ,JV , (3.13)

where 0{z) is a J  x d unknown matrix, V{x)  is a  d x 1 known vector, a  are noise variables

and J  > d, as follows:

1. for each j  =  1 , . . . ,  J ,  eliminate the j t h  budget share from the analysis and consider 

a  reduced demand system

=  e ^ H Z i ) V ( X i )  + Ui, i = 1 , . . . ,  N ,  (3.14)

where and Q^^(z) are the vector Yj and the matrix 0(z)  with its j th  element

and its j th  row, respectively, eliminated,

2. for each j  =  1 , . . . ,  J ,  estimate the local rank l P \ z )  of a  reduced system (3.14), 

that is, the rank of the matrix © ^ (z ) ,  by using methods proposed for local tests of 

Section 3.1, and

3. to determine R{z), take the maximum of the estimated ranks L ^ ( z )  over all f s .

The following remarks provide further comments and insight on the estimation algo

rithm  above.

R e m a rk  3.3.2 The above algorithm can be applied only when J  > d. Recall that this 

restriction was key to obtain relation (3.10). We do not believe that, when J  <d ,  there is 

a  relation analogous to (3.10). In applications, J  typically ranges between 5 and 8, so that 

one still has flexibility in choosing V.

R e m a rk  3.3.3 In the statistical literature on rank estimation of demand systems, the 

approach described above can not be found to our best knowledge. One indeed drops a share
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of goods from the analysis as we did but one does not take the m a x im u m  of all estimated 

ranks at the end (one just takes the rank of that one, arbitrarily chosen reduced demand 

system). See, for example, Cragg and Donald [18], p. 1306, or Robin and Smith [89], p. 161. 

The author is not aware why the rank estimation results in such demand systems should 

be invariant to a share of goods eliminated from the analysis. (Although in other questions 

related to singular covariance equations, this may be true. See, for example, Berndt and 

Savin [12].) Another approach found in the literature is to work with the original (full) 

demand system bu t then modify the rank tests th a t are used. See, for example, Donald 

[28], p. 123, where the so-called minimum-x2 statistic for the rank of a matrix is compared 

to a x2-distribution having less degrees of freedom than without singularity restrictions. 

The author, however, has not seen a  rigorous proof of the aforementioned result.

R em ark  3.3.4 Recall from Section 2.3 that demand systems y  =  0(z)V(x),  known as 

exactly aggregable demand systems, are of special interest both in Economic Theory and 

in applications.

3.3 .2  T h e  ca se  o f  n on -p aram etr ic  m o d e l

We now turn to (NP) model introduced in Section 3.2. Our goal is to motivate the problem 

of adjusted rank estim ation formulated in that section. As in the case of applications 

of (SPF) model, because of the adding up condition of budget shares and the entailing 

singularity problem, we want to eliminate one share of goods from the analysis. In order 

to do so, we need to know how this elimination changes the rank of a demand system. The 

following lemma, which is implicit in Donald [28], provides the answer. Consider a  demand 

system

y = f ( x , z ) ,  (3.15)
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where f ( x ,  z) is a J  x 1 vector, and let

y(j')= F (j) (x ,z ) , (3.16)

where FV) (x, z) is a (J —1) x 1 vector, be a reduced demand system obtained by eliminating 

the j t h  share of goods in the demand system (3.15). Recall also the definition of the 

adjusted rank adrk{F(-, z)} introduced in Section 3.2.

L e m m a  3 .3 .3  With the above notation, we have that, for fixed z  and any j  = I , . . .  , J ,

rk {/(-,*)} =  ad rk{F ^(-,z)}  +  1. (3.17)

PROOF: Suppose without loss of generality that j  = 1 and set R{z) =  rk{/(-, z)}. Then,

by Lemma 2.2.1,

f ( x ,  z) =  a(z)h(x , z), (3.18)

where a(z) =  (a/t/(z)) is a  J  x R(z)  matrix and h(x ,z)  =  (h i{x ,z )) is a R(z) x 1 vector.

Since the J  shares add up to 1, we obtain from (3.18) that

1 =  hi{x ,z)  + ■■■+ ^ 5 3 a fcfi(2)(z)^  hR{z)(x,z).

Suppose, for example, that aki(z ) #  0- Then, we have

h i{x ,z )  =  ^ T | a fcl(z)^ -  h2(x,z)

------------------------------------------------------ fc«(*)(*i2)- (319)
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Substituting (3.19) into (3.18), we can conclude that

F ^ ( x ,  z) =  c(z) + A(z)H (x,z), (3.20)

where A(z) is a ( J  — 1) x (f2(z) — 1) matrix, H (x ,z )  is a (R (z ) — 1) x 1 vector and c(z) is 

a  ( J  — 1) x 1 vector. In view of Definition 3.2.1, (3.20) implies that

adrkfFW (-,*)} < R {z)  -  1. (3.21)

To show the converse, observe that, by using (3.5), the elements f 2 (x, z ) , . . .  , f j ( x ,  z) of 

FW (x,z) can be expressed as linear combinations of a d rk fF ^ (-, z)} -F1 functions of x and

z. Since /i(x , z) =  1 — / 2 (x, z )  — f j ( x , z ) ,  the function / i ( x ,z) can be also expressed

as a linear combination of these adrk{F^^(-, z)} +  1 functions. In view of Definition 2.2.1, 

we obtain that

R(z) =  rk{/(-,z)} <  adrk{F(1)(-,z)} +  1. (3.22)

The conclusion follows from (3.21) and (3.22). □

E xam ple 3.3.1 Suppressing the dependence on z, consider for example the 4 x 1  vector

/(x ) =  (1 —x  — x  — x  2x x  )2\/

with its components summing up to 1, and the corresponding reduced vectors

F (l)(x) =

( \  —x

\

2x
_2

, F W {x) =

f  . 2 )1 —x — x 

2x

and F ^ ( x )  and F ^ ( x )  defined in a similar way. Observe that rk{ /}  =  3 and that
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ad rk{F ^}  =  2 for j  =  1,2,3,4. To see, for example, the last equality for j  =  2, observe 

first that

F (2) (x) =

' - n '

2 0 

0 1

/  \ (  u \a\ bi

02 + 62 9(x)

V 03  J [ b 3 )

showing that adrk{F^2̂ } <  2. If, however, there is a  function g(x) such that

F ^ ( x )  =

(that is, adrk{F(2)} <  1 ), then this yields in particular that 2x = ai +  &2ffOc) and hence 

that g(x) =  ci +  c^x  for some ci,C2 - This g(x), however, cannot satisfy another required 

relation x 2 =  0 3  +  b3g{x).

Estim ation o f  rank using (N P) m odel. Based on Lemma 3.3.3, we propose to estimate 

the local rank R(z)  =  rk{/(-, z)} of a demand system

Yi = f ( X i , Zi) +  ef, z =  1 , . . . ,  IV, (3.23)

where f (x ,  z) is a  J  x 1 unknown vector and e, are noise variables, as follows:

1. fix one j  G { 1 , . . . ,  J},  eliminate the j th  budget share from the analysis and consider 

a reduced dem and system

Y &  =  F ^ ( X i ,  Zi) +Ui,  t =  1, ...,1V, (3.24)

where and  F ^ ( x , z )  are the vectors Yi and f ( x ,  z) with their j t h  element elim

inated,

2. for that fixed j \  estimate the local adjusted rank L ^ \ z )  =  ad rk { F ^ (* ,2 )} of a
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reduced demand system (3.24) by using methods proposed for local tests of Section 

3.2, and

3. to determine R(z),  add 1 to the estimated adjusted rank L ^ \ z ) .

R e m a rk  3.3.5 The idea to determine the rank of demand system by adding 1 to the 

estimated adjusted rank, can be found in Donald [28]. (The term “adjusted rank” is not 

used by Donald [28].) Observe also that, in contrast to rank estimation for the semi- 

parametric factor model, it does not m atter here which share of goods is eliminated.
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Kernel Based Estimators

In this chapter, we introduce some estimators for (SPF) and (NP) models, and establish 

some of their properties. Since these estimators are kernel based, we first recall in Section

4.1 the definition and the localization property of a kernel function. The estimators are 

defined and their properties are stated in Section 4.2. Sections 4.3 and 4.4 contain the 

proofs of the results of Section 4.2.

4.1 Kernel functions

We first give the definition of a  kernel function (a kernel). I t uses the notation xb — 

x il ■ "1m for 6 =  (&i,. . . , 6m) G (N u{0})m, x  =  ( x i , . . .  , x m) €  Rm and |6| =  6i H l-6m.

Definition 4.1.1 (Kernel function) A function K  : R"* —> R is a kernel of order r  6  N 

on Rm if it has a compact support, is bounded and satisfies the following conditions: (i) 

f Rm K(x)dx  =  1 and (ii) f Rm x bK (x )d x  =  0 for any 6 €  (N U {0})m satisfying 1 <  |6| <  r.

E xam ple  4.1.1 Some of the well-known and commonly used kernel functions on R are 

the uniform kernel (see Figure 4-1 below) given by

K { x )  =  x  €  R,

the triangle kernel given by

K (x) =  (1 — M)l{|x|<i}, x  G R,

45
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or the Epanechnikov kernel given by

K{x)  =  -(1  — ;c2)1{|i|<i}t a: G K- 

For more examples, see Devroye [26], Devroye and Gyorfi [25] and Hardle [48, 49].

Kernel functions

Uniform
T riangle
E panechnikov

05

-OS OS- 0.6 - 0.2

Figure 4-1: Uniform, triangle and Epanechnikov kernels

R e m a rk  4.1.1 Observe that, if K  is a  kernel on R771 of order r  and K  is a kernel on R7* 

of order r, then

K q ( x i , X 2 )  =  K ( x i ) K ( X 2 ) ,  (X \ , X 2 ) €  Rm x R71,

is a  kernel on R771 x Rn of order m in{r,r}. This provides a  way to  construct kernels on Rm, 

m  >  2, by using kernels on R.

R e m a rk  4.1.2 We assumed in Definition 4.1.1 that a  kernel K  has a compact support. 

One may consider kernels with unbounded support as well. However, it is a  common belief 

th a t results with compactly supported kernels will continue to hold for unbounded support
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kernels as well when proper modifications in assumptions of these results are made. In our 

work, we decided not to include these technical details.

Kernel functions are used in statistics, as well as in other areas of applied or pure 

mathematics, because of their localization property. We recall the localization property in 

the following proposition. Since the proposition will be used many many times throughout 

the rest of the thesis, we provide its proof to the readers convenience. For notational 

simplicity, we set

P ro p o sitio n  4 .1 .1  (Localization property) Let K  be a kernel on Rm of order r  €  N. Sup

pose that a function g : Rm —> R* is i— times continuously differentiable in a neighborhood 

of z q  G R”1. Then, as h  0,

Moreover, i f  the function g has its r-order derivatives bounded on R”1, then the term 0 (h r) 

in (4-2) does not depend on z q .

PROOF : We will suppose for simplicity th a t k  =  1, that is, the range of the function g is 

R. The case of a  general k  can be proved by applying the proof below to each component 

of the vector g. By using the Taylor’s formula for the function g(z) around z =  zo, we can 

express the integral in (4.2) as

(4.1)

where h > 0 is the so-called bandwidth (or smoothing parameter).

f  g{z)Kh(z -  z0)dz =  g(zQ) + 0 (h r) 
J r ™

(4.2)

/  |  ^  ^  r  _  -r~\k  4 -  —  V *  ^ ^ ( z q  +  0(z —  Z q ) ) ( z  —  Z q ) *  J Kh(z — ZQ)dz,

(4-3)
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where k = [k{, . . . ,  km) G (NU {0})m, dkg / d kz k = t f ^ g /d z* 1 - - - d z f r  and 6 €  (0,1)

may also depend on z.  Since i f  is a kernel of order r, we have

zo)kKh(z ~  zo)dz =  0

for any k  =  (fc1?. . .  , km) such that 1 <  |Ar| < r  — 1. Then, the integral (4.3) becomes

3(2°) +  J ^  ^  X I  +  9 ( z  ~  Z ° N Z  ~  z o ) k K h ( z  ~  Z o ) d z  = :  g ( z 0 ) 4- / .  (4.4)

Since dkg /d zk is continuous in a neighborhood of z q  by assumption, there is e > 0 such 

that

=  Me(z0) <  oc.max
|fc|=r,|2-;0|<f

Since K  has a compact support supp{/f}, there is A  >  0 such that supp{if} C  (—-A, A)m. 

Then, since suppl/f^} C  (—e ,e )m with e > hA  (or h < e/A), by using the change of 

variables z = vh + z q  below, we obtain

| / |  <  X I  Mt(zo) f  \ z -  zo\k\Kh(z -  z0)\dz
r ■ |J t |= r  A - * . * ) "

=  h  E  M‘(*o)/i|fc| [  \v\k \K(v)\dv =  Chr,
r! , trL  JR"

where the constant C  is given by C = (r\)~l M e(z0) 52\k\=rfit™ |u|fc|if(u)|du. This proves 

the proposition. □
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Observe that, for any integer j  > 1, a  symmetric kernel K  of order r  >  1 induces a  

kernel K ^ ( x )  = {K{x))2i/\\K\\??j of order 2. We will often use the notation

*•*»(«> = ( *  ( i ) T  ( « )

to denote the kernel scaled by a bandwidth parameter h > 0.

Finally, we state the assumptions on the kernel functions which will be used in the 

sequel to state our results.

A s s u m p t i o n  (S P F ) L5: The function AT is a symmetric kernel on Rm of order r. 

A s s u m p t i o n  (N P ) L4: The functions K  and K  are symmetric kernels on R” and R"1, 

respectively, of order r .

4.2 Estimators for two models

In this section, we introduce some kernel based estimators for (SPF) and (NP) models. We 

also establish some of their properties that will be used in the following chapters. We first 

consider the (NP) model which involves well-known estimators.

In the case of (NP) model, we will need an estimator of an unknown function F.  We 

will use for it the well-known Nadaraya-Watson estimator

1 N
F (x ,z )  =  - : J 2 YiKh(x -  X i ) K h(z -  Zi) p[x,z)~l , (4.6)

i= l

where A" is a kernel on R” , K  is a  kernel on Rm and

1 N
p{*, z ) = x Y ,  ~  X i)K h(z -  Zi). (4.7)

i=I

Such estimators have been extensively studied in the statistical literature. See, for example, 

Johnston [54], Prakasa Rao [83], Devroye and Gyorfi [26], Devroye [25] or Hardle [48, 49].
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The basic idea behind the estimator F(x, z) can be expressed as

E F ( x , z ) p ( x , z ) =  E Y i K h(x -  X i ) K h{z -  Zi)

= E F i X i ' Z J K U x - X J K H i z - Z i )

=  /  F (x i ,z i )p (x i ,z i ) k k { x  — x i ) K h(z -  zi)dxidzi

«  F (x ,z)p (x ,z), (4.8)

where p(x,z)  denotes the density of (X i , Z i ) and where in the last step we used the local

ization property of the kernel function K(-)K(-) (see Proposition 4.1.1). Under suitable 

conditions, one can show th a t F (x , z)  is a consistent and asymptotically normal estimator 

for F(x, z). For more information on the estimators F  and p, see the references indicated 

above.

In addition to the estim ator F,  we will also consider

1 N
"  F (*>  Z^ Yi ~  F(<X i ' (4‘9)

*=1

which is an estimator for the variance-covariance m atrix S  of the noise 17*. As we will

see in Lemma 5.2.11 of Section 5.2.5 below, under suitable conditions, S  =  E +  op(l) and

hence that E is a  consistent estimator for E.

In the case of (SPF) model, we will need an estimator o f an unknown matrix 0 (z ). We 

define it as follows.

D efin ition  4.2.1 (Estimator for  (SPF) model) For fixed z , let

1 N
=  j f ^ 2 y i V ( X i Y K h(z -  Z i ) Q ( z ) - \  (4.10)

1=1
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where

1 N
£(*) =  ^ E  V m V ( X i Y K h(z -  Zi). (4.11)

i= l

R e m a rk  4.2.1 The estimator ©(z) is a generalization of an estimator considered by Li, 

Huang, Li and Fu [69]. These authors considered our (SPF) model with the function

V{x)  = |  1 I , x e r ,
X

and also defined the estimator of ©(z) by (4.10) and (4.11) where V(x)  is replaced by 

(1 x ) ' . The definition of ©(z) is also similar to local linear regression estimators (see, for 

example, Fan and Gijbels [31]) and to estimators in varying coefficient models (see, for 

example, Fan and Zhang [32]).

R e m a rk  4.2.2 The estimator ©(z) in (4.10) can be viewed as the solution to the mini

mization problem

N
© (z) =  argm inV ; |Yi -  © ( z ) P ( X i ) |2 K h(z -  Zi).  (4.12)

©(*)

R e m a rk  4.2.3 The estimator ©(z) can be also expressed as

©(z) =  Y D V ' ( V D V ' ) - 1, (4.13)

where Y  is a G x N  matrix with the entries Yi for its N  columns, V  is a  d  x N  matrix with

V (X i )  for its N  columns and D  is the N  x N  diagonal matrix

D  =

f  K h{ z - Z x) . . .  0

• • Kh(z -  Zn) i
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The expression (4.13) is similar to that of the Generalized Least Squares estimator with 

the weight matrix D. (This fact can also be seen from (4.12).)

Observe that the expression (4.10) involves the inverse of the matrix Q(z). By, the next 

proposition, the matrix Q(z) converges in probability to the matrix Q(z) defined in (3.2). 

Since, by Assumption (SPF) L4, the matrix Q(z) is positive definite (thus invertible), we 

have that Q(z) is invertible with probability approaching 1 as iV —>• oo.

P ro p o sitio n  4.2 .1  (Consistency of Q(z)) Under Assumptions (SPF) L1-L3 of Section 

3.1 and (SPF) L5 of Section 4-1, as h -+0 and N h m —> oo, we have that, for fixed z,

Q ( z ) - ^ Q ( z ) ,  (4.14)

where Q(z) and Q(z) are given by (4-11) and (3.2), respectively.

Proposition 4.2.1 is proved in the next section. The following two results show that the 

estimator ©(2 ) is consistent and asymptotically normal. Asymptotic normality is key to

local tests for (SPF) model. Note also that we obtain the rate of convergence in the result

on consistency.

T heorem  4.2.1 (Consistency of Q(z)) Under Assumptions (SPF) L1-L5 of Sections 3.1 

and 4-1, we have for fixed z,

e W - e ( z )  =  c.p ( v  +  - ^ p ) .  (4.i5)

Moreover, the optimal order in (4-15) is N ~ r^ 2r+m\  which is obtained by taking

h = 0  ( jV -1/ (2r+m))  . (4.16)

T heorem  4.2 .2  (Asymptotic normality o f  ©(2 )) Under Assumptions (SPF) L1-L5 of
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Sections 3.1 and 4-1, fo r  fixed z, we have

y /N h mvec(e{z) -  ©(z)) - A  AT{0, W {z )) (4.17)

as

N  —> oo, h —> 0, N h m -> oo and N h Tn+2r -» 0, (4.18)

with

(4.19)

where ® denotes the Kronecker product.

The proof of Theorem 4.2.1 can be found in Section 4.3 and that of Theorem 4.2.2 in 

Section 4.4.

R e m a rk  4.2.4 Recall th a t the vec operation of a  m  x n  matrix A  =  (aij) is defined as the 

m n  x 1 vector vec(A) =  (an  . . .  a .. .  a^ . . .  0 ^ ) ' ,  th a t is, the columns of A  are stacked 

one underneath the other. Recall also that the Kronecker product ® of a  m x n  m atrix 

A  =  (aij) and & p x q m atrix  B  =  (6y) is defined as the m p  x nq matrix

A ® B  =

( a n R  ai2 B

Ojnlfi am2B

ai nB

amnB

(4.20)

The basic properties o f the Kronecker product, some of which be also used in this thesis 

below, are A ® { B  + C ) = A ®  B  + A ®  C, (.A® B )' =  A! ® B ’, (A ® B )~ l =  A-1 ® B ~ l 

(when A and B  are non-singular), vec(AB) — (B' ® Im )\ec(A) = (Iq ® A)vec(B) (when 

n  =  p and where Ik is a  k  x A: identity matrix) and others. See, for example, Rao and  Ran 

[85] or Magnus and Neudecker [73]).
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R em a rk  4.2.5 One can prove the asymptotic normality result under the heteroskedas- 

ticity assumption (3.3) in Remark 3.1.2. In this case, the limit variance-covariance matrix 

W(z)  can be shown to be expressed as

W (z) = p(Z)E( ( Q ( z ) - l V (X l)V (X lyQ(z) - 1) ® X ( X l , Z l )\Zl =z)\ \K\\ l

=  \\K\\l f  ((Q (2 )"'Vr(a:i)V (ii)'Q (z)_1)® E (a :1, 2 ))p(x1,z)da:1, (4.21)
J R"

where p(z) is the density function of Z,.

In practice, the limiting variance-covariance matrix W (z ) can be estimated by

W (z) = (Q(z)~l ® £)\\K\\l,

where E is now defined as

1 N
s  =  Jf £ ( * •  ~ e i Z t m x M Y i  -  e i z jv iX i) ) ' .  (4.22)

n = l

One can show that E is a  consistent estimator of E. Since Q(z)  is a  consistent estimator 

of Q(z) by using Proposition 4.2.1, we have that W{z)  —>p W (z).

Finally, we state a  multi-dimensional analogue of Theorem 4.2.2. This result, which is 

proved in Section 4.4, will be used in Chapter 6 where we focus on global tests.

T h eo rem  4.2 .3  (Normality and independence of  (© (zi),. . . ,  Q(zq))) Let z \ , . . . , z q be 

fixed different values of z. Suppose that the conditions of Theorem 4-8.2 are satisfied for  

all Zi, i =  1 , . . . ,  q. Then, we have

y/Nhm (vec(Q(zi) -  ©(zL) ) , . . .  ,vec(0(z,) — © (*,)))
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- U  (M (0, W (Z i ) ) , . .  - ,Mq(0, W ( zq))), (4.23)

where Mi, i =  l , . . . , g ,  are independent normal random vectors with covariance matrices 

W(z{) defined by (4-19).

4.3 The proof of Theorem 4.2.1 and Proposition 4.2.1

To establish the properties of the estim ator ©(2 ) in (4.10), it is convenient to introduce 

the matrices

1 N
A l(2) = - j f Y t ^ i Z i ) - e { z ) ) V { X i)V{Xi),K h{ z - Z i), (4.24)

1 = 1  

1 tf
A2(z) = - Y L U iV^ ' K ^ z - z i)- (4-25)

»=i

Observe that by using (4.10), the (SPF) relation Yi =  Q(Zi)V(Xi)  -t- £/,• =  ©(z)F(X,) + 

(© (Z j)  — Q (z ) )V (X i)  +  Ui and the expression (4.11) for Q(z),  we have

©(z) =  ©(z) +  (A i(z) +  A2(z)) Q(z)~l . (4.26)

In the next result, we show that, under suitable conditions, the matrices A i(z) and A2(z)

are asymptotically negligible and we also obtain their rates of convergence. Consistency 

of the estimator ©(z) and the corresponding rate of convergence will then follow directly 

from this result and the decomposition (4.26).

L em m a 4.3.1 Under Assumptions (SPF) L1-L3, L5, for fixed z, we have

Ai (z) =  Op (hr +  h / \ f N h , (4.27)

A 2(z ) =  Op( l / V ^ ) . (4.28)

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

56

PROOF: We use the notation M 2 =  M M '  for a  m atrix M.  Since, by the Chebyshev-Markov 

inequality, w ith e >  0 and a € R*7 such th a t |a| =  1,

P  ( |a 'A i(z)|2 >  e) =  P (a 'A i(z )2o >  e) < e~la 'E A i{z )2a, (4.29)

it is enough to show that E A i(z )2 =  0 ( h 2r 4- h2 fN h m). Indeed, by choosing a vector 

a =  (0 ,. . .  ,0 , 1, 0 , . . .  ,0)' with 1 in the ith  place, one would get th a t each row of Ai(z) 

converges to 0 in probability with the specified rate. By using (4.24) and independence of 

(X i , Z ,)’s, we have E A \{z)2 =  N ~ lS i  +  N ~ l (N  — 1)52, where

=  E a e i Z r i - e w m x o v i X t Y K U z - Z x ) ) 2 ,

S2 = { E i e i Z J - e i z V V i X ^ V i X O ’K H i z - Z r ) ) 2 .

Consider first the term S\, which can be expressed as

5l = Ln {fRJ {e[Zl) ~ QiZ))VM V̂ y)2P ^ Ẑ K̂  -  Zjdz d̂xu
(4.30)

where the kernel K 2,h is defined by (4.5). By using Assumptions (SPF) LI, L3 and L5, 

since K 2,h is a  kernel of order 2, we can apply Proposition 4.1.1 to the integral in the braces 

in (4.30) to obtain that

s‘ = °(£)-
Similarly, by using Proposition 4.1.1,

S2 = ( [  \ f  ^ ( ^ - e ^ m x O V i x t Y p i x u Z ^ K ^ z - z ^ l f t n )  =  0(/i2r),
\ J R" U r™ J /
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since Kh is a  kernel of order r . This shows that

BA'W 2 = W  + - w l s * = °  ( ^  + A2r)  •

Consider now the matrix A 2(z) iQ (4.25). As in the case of the m atrix A i(z). we need 

to consider

E A  2(z)2 =  -  ZO )

+  ^ ^ E { U xV [ X l ),V {X 2)U,2K h{z -  Z \)K h(z  -  Z2))

=  j ^ E  ( V i X O ' V i X t )  S K 2 A ( z  -  Z i ) )  ,

since 2?((7i Zj) =  0 and £7(i7il7{|.X’i , Z\)  =  S. Proposition 4.1.1 yields E A 2(z)2 = 

0 ( ( N h m) - 1). □

P r o o f  o f  T h e o r e m  4.2.1: The result (4.15) follows from (4.26) and Lemma 4.3.1. To 

obtain the optimal rate in (4.15), set hr =  l / s /N h m. This yields h  =  0 ( N ~ l^ 2r+m )̂. □

We will now prove Proposition 4.2.1 which concerns the convergence of the matrix Q(z).

P r o o f  o f  P r o p o s i t i o n  4.2.1: We will show that Q(z) — Q(z)  —>p 0. Proceeding as in 

the proof of Lemma 4.3.1, we need to consider

E(Q(z) -  Q(z))2 =  E Q ( z ) 2 -  EQ(z)Q{zY ~  Q{z)EQ {z)’ +  Q(z)2. (4.31)

Since

EQ(z)  =  E V { X i ) V ( X i ) ' K h{ z - Z i )

=  f  (  [  V (x i)V (x i) 'p (x i ,z i )K h(z -  z i)dzi \  dxi,
J Rn l./Rm J

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

58

by applying Proposition 4.1.1 to the above integral in the braces, we obtain that

EQ{z) = f  V (x i)V (x i) 'p (x i ,z )d x l + 0 ( h r)
J R"

=  p(z) f V (x i)V (x iY p (x i\Z i  = z)dxi +  0{h r)
J  R»

=  Q(z) + 0 (h r).

As for EQ (z)2, by using independence of (X,, Zi) and (Xj, Zj) for i ^  j , we have

E Q(z )2 = 1 Ê ( ( V ( X 1) V (X 1Y)2K2M^  -  Zi))

+ (E iY iX r iV iX tY K H iz  -  Z l ))2 . (4.32)

By using Proposition 4.1.1, the first term in (4.32) is of the order 0 ( (N h m )~l ). The order 

of the second term is that of (EQ{z))2 =  Q (z)2 +  0 (h r ). Now, by substituting the obtained 

orders back into (4.31), we obtain that Q(z) =  Q(z) + O p(hr + l / y /N h 771). This shows that

Q{z) ->p Q{z). □

4.4 The proof of Theorem 4.2.2 and Theorem 4.2.3

In this section, we prove Theorems 4.2.2 and 4.2.3 which show that 0 (z) is asymptotically 

normal and also that @(z)’s are asymptotically independent for different values of z.

P R O O F  O F T h e o r e m  4.2.2: By using (4.26) and the property vec(AB) =  ( B ' ® I m ) v e c ( A ) , 

where 4 i s a n m x n  matrix and B  is an n  x q  matrix (see, for example, Theorem 2 on p.
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30 in Magnus and Neudecker [73]), we have

V  N h rnvec(Q(z) — ©(z)) =  y/Nh™vec((Ai(z)  +  &2(.z))Q(z)~l )

=  \/Nh™ (Q(z)~l ® /c)vec(A i(z) +  A 2 (z))

=  \ZNhm (Q (z)~ l ® /c)(vec(A i(z)) +  vec(A2 (z))).

Since by Proposition 4.2.1 and Slutsky’s theorem, Q (z)~ l —tp Q(z)~l , it is enough to show 

that

y /N h m {Q(z)~l ® Ic;)(vec(Ai(z)) +  vec(A2 (z))) W (z)) .

In view of the definition (4.19) of W{z) and also the property (A  ® B )(C  ® D ){E  ® F) = 

ACE  ® B D F  of the Kronecker product, this is equivalent to showing th a t

y /N hm (vec(Ai(z)) +  vec(A2 (z))) - A ^ O ,  W0(z)), (4.33)

where Wq{z ) =  (Q (z) ® T.)\\K\\%, or by using (4.24), (4.25) and the notation

tN,i =  v ^ (v e c ( (© (Z t) -  e (z ) )V (X i)V (X iY )  +  vec(UiV(Xiy))Kh(z -  Z{)

=  y / i ^ ( ( ( y (X i )V (X iY )  ® / G)vec(©(Zi ) -  ©(z)) +  (V(Xi)  ® IG)Ui)Kh(z  -  Zt), (4.34) 

to the convergence
1 N

The Cramer-Wald theorem (see, for example, p. 18 in Serfling [95]) implies that the last 

convergence is equivalent to

1 NE W,i W M )>  (4-35)

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

60

where tjat,,• =  A G \  {0} is an arbitrary vector and W\{z) =  \ 'W o (z ) \ .  By using

the Lyapunov’s version of Central Limit Theorem for triangular arrays (see, for example, 

p. 32 in Serfling [95]), to show the convergence (4.35), it is enough to prove that

g t o (4 3 6 )
-  E T O , , | 2 )4

as iV —)• oo, and also

E ( 7 ^  E  w )  =  E t&,i + (n ~  I K ^ a m ) 2 -> (4.37)

E  =  y/NEriN'i 0 . (4.38)

We first establish (4.38). Since =  A'£jv,, the convergence (4.38) will follow from 

V N E ^s ,i  —> 0. By using (4.34) and E(Ux\Xi, Z\)  =  0, we get that

ESn ,I = y / i & E U i V m V i X i Y )  ® I c ^ e c i e iZ r )  -  Q{z))Kh(z -  Z J )

= f  f  ( V ( X l ) V ( X l y ®  IcivecOCzt) - e ( z ) ) p ( x 1, z 1)K fl( z - z l ) )d z1d x1.
J  Rn J Rm

By applying Proposition 4.1.1, we deduce that

E£n ,i =  O (h(™+2r)/2^ (4 39)

This shows in particular that y /N E ^^,i —► 0. To prove the convergence (4.37), it is enough 

to show that E g ^   ̂ —> W q(z ) where ^ and -W(#&v,i) 2 -*■ 0  where ( E ^ ^ j ) 2 =
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E£'n  By using E{U\\X\,Z{)  =  0, we obtain that

E£n,i = \ m l E ( ( a V ( X l )V{Xiy)<2>IG)vec(G(Zl) - e ( z ) ) ) 2 K 2,h( z - Z l))

+ WKWlEfavmQlaWifKzMz-Zi j )  ~ h + h ,

where K^ji is the kernel function defined by (4.5). Arguing as in Lemma 4.3.1, and by 

using the formula ((A <8> Ig )B )2 =  AA! ® B B '  for a  d x 1 vector A  and a  G x 1 vector 2?, 

we conclude that I\ = 0 (h 2) and I2 =  W q ( z ) ■+■ 0 ( h 2). (Indeed, for the term I 2 , by using 

that formula, we have

I2 =  \\K \\lE{{V{Xl )V {X l ) '® U lU[)K2,h{ z - Z l ))

=  \\K\\lE ( { V iX J V iX i) '  ® E )K 2M * ~  * i)) = W0(z) + 0 (h 2).)

This yields

E & tl = W0{ z )+ O (h 2) (4.40)

and, in particular, 2?f^tl —► WQ(z). Since (2?Ov,i)2 =  0(h.rn+2r) by (4.39), we obtain that 

N[E£pf'i)2 = 0 { N h m+2r) -*• 0 by the assumption (4.18).

We still need to show (4.36). Let us first find the order of the numerator in (4.36). By 

using t/at,, =  A'&v.t, we have

E\rjMti — £ 7̂ , 114 <  const|A|4(f?|fjv,i|4 +  |25fw,i|4). (4.41)

Since we already have the order of 2?£jv, 1 in (4.39), we need to consider only 25|£jv,i|4- By

using the definition (4.34) of &v,i, we get 2?|£/v,l|4 <  const(Si + 5 2 ), where

51 =  /i-m £?|K(Jfi)V(Xi)/|4|vec(©(Zl ) — &(z))\4 K ^ ^ z  — Zi),

52 =  h~mE \V {X l )\*\Ul \*KA,h{ z - Z l )
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and K^hi-) is defined by (4.5). By using Proposition 4.1.1, we conclude that Si =  0 (/ir-m ), 

S 2  =  0 (h ~ m) and hence that /?|£jv,i|4 =  0 (h ~ m). Together with E£n,i =  O (jhSjn+2r'>/2) 

from (4.39) and also (4.41), this shows that

£|i7at,i — E t}s ,i \A =  0 (h ~ m).

Finally, by using (4.37) and (4.38), we conclude that the order of the term in (4.36) is 

0 ( ( N h m)~l ) and hence (4.36) is valid since N h m —»• 0 0 . □

P r o o f  o f  T h e o r e m  4.2.3: Arguing as in the proof of Theorem 4.2.2, it is enough to 

show that

V N h m (vec(Ai{zi) +  A2(*i)), - - . ,  v e ^ A ^ z ,)  +  A2(z,)))

- A  (M (0, W o(zi)), . . . , U q(0, W0(zq))), (4.42)

where Wq{z ) — (Q (z) <3 EJII-K'Hj and A i(z), A2(z) are defined by (4.24) and (4.25). As in 

the proof of Theorem 4.2.2, for fixed a i , . . . ,  aq G , the random variable

a[ V N h mvec(A i(z \) +  A2(zi)) H h a!q\ / iV7imvec(Ai(zq) + A 2(zq))

is asymptotically normal with the variance given by

lim N h mE{a'ivec(A i(zi) +  A2(zi)) 4-----4- a'qvec(Ai(zq) 4 - A 2(z,)))2. (4.43)

The result (4.42) will then follow from the corresponding one-dimensional result (4.33) 

valid for zl5. . . ,  zq, as long as

lim N h mE(vec(Ai(zi) 4- A zte^v ec tA ^Z j) 4- A2(zi )))' =  0, (4.44)
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for i  7̂  j .  To show (4.44), suppose for simplicity th a t G =  d =  1. In view of (4.24) and 

(4.25), we have

£(Ai(zi) +  A2(zi))(Ai(z-,-) +  A2(2j )) =  £?Ai(zi)Ai(zj) +  £ A 2(.zt)A2(z.,)

=  ^ E (© (Z 0  -  0 (z i))(© (Zl ) -  © ( ^ ^ ( X i ) 4* ^ , -  -  Z O ^ fz y  -  ZO 

+ ^ ~ ( Z ( © ( Z O  -  ©(at))V’(Jr1)2/ffc(zi -  Z l ))Z (0 (Z 1) -  © ( z , - ) ) ^ ) 2* * ^  -  ZO)2 

+-^Z(V '(A '1)2iifA(zi- -  Zi)Kh(zj -  ZO = : h  + I2 +  I3.

Since the kernel K  has compact support, we have E F { X i, Zi)Kh{z{ — Z\)Kh(zj — Z\)  =  0 

for small enough h and any bounded function F. This implies that I\ =  0 and I3 =  0 

for small enough h. As for the term /2, one may show by using Proposition 4.1.1 that 

/ 2 =  0 ( h 2r). Then,

lim N h m(Ii + I2 + / 3) =  lim N h mI2 =  0,

since JV/im+2r —► 0. □
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Chapter 5

Local Tests

In this chapter, we consider local tests for (SPF) and (NP) models. Sections 5.1 and 5.2 

are on hypothesis testing, namely, for fixed z  and L, to test H q : rk{0(z)} < L  against H i  : 

rk{0(z)} > L in (SPF) model and H q : adrk{F’(-,z)} <  L  against H \  : adrk{F(-, z ) }  > L  

in (NP) model. Section 5.3 concerns estimation of the ranks rk{0(z)} and adrk{F(-, z ) }  

themselves.

5.1 Local tests for semi-parametric model

In this section, we consider local tests for (SPF) model where the basic problem is to 

test, for some fixed z  and L  <  min{G,d}, the hypothesis H q : rk{0(z)} < L, against 

the alternative Hi : rk{0(z)} > L. In Section 5.1.1, we recall the well-known LDU test 

and apply it to the matrix 0 (z ). In Section 5.1.2, we tu rn  to the so-called minimum-^2 

test and, in Section 5.1.3, we explore its connections to the eigenvalues of some random 

matrices. Other tests available in the literature are discussed in Section 5.1.4.

N o ta tio n . We suppose throughout this section that z  is fixed. To simplify the notation, 

we will denote the dependence on z  by a subscript 0. For example, the matrix 0 (z) and 

its estimator 0(z) will be denoted by ©o and 0o, respectively, the rank L(z) =  rk{©(z)} 

by L q , the matrix Q(z) by Q q and so on. In many other less important situations, we will 

suppress the dependence on z overall.

64
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5 .1 .1  L D U  b ased  te s t

The LDU test for the rank of a matrix is based on the Lower-Diagonal-Upper triangular 

(LDU, in short) decomposition of a  matrix with a complete pivoting. The LDU decompo

sition is achieved by a successive applications of the usual Gaussian elimination procedure. 

A complete pivoting means th a t a t each step of the Gaussian elimination procedure the 

largest element in absolute magnitude is shifted to the top left comer by column and row 

interchanges. For a background or more information on the LDU decomposition and a 

complete pivoting, see for example Golub and Van Loan [39].

Supposing that the m atrix of study is ©o =  0(z) for fixed z, which is G x d and has 

an unknown rank Lq = Lq(z) < d  =  min{G,d}, the LDU decomposition with a complete 

pivoting allows to express @o in a  factor form

AQ0B  = LDU. (5.1)

Here, A  and B, the so-called perm utation matrices with dimensions G x G  and dxd,  respec

tively, correspond to the column and row interchanges in a  complete pivoting procedure. 

The other matrices L, D and U are of the forms

L =

f  Ln 0 0

L21 L22 0

^  L31 L32 L32 y

u =

f Uu U22

0 U22

0 0

\

(5.2)

and

Du 0 0

D = 0 D22 0 (5.3)

.  0 0 ° >

where the partitions are into Lq, d — Lq and G — d rows and columns except the matrix U,
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where the columns are partitioned into Lq and d — L q columns. The submatrices L n  and

U'u  are unit lower triangular matrices. The matrix D (and hence the submatrices D u and 

D22) is diagonal.

By using the above LDU decomposition, Gill and Lewbel [38] introduced a test for the

elements of the diagonal matrix D u  are non-zero. Hence, in order to determine the rank 

of the matrix, one may test whether the matrix D22 is significantly different from zero.

is asymptotically normal with a  specified asymptotic variance-covariance matrix. Then, 

based on this asymptotic normality result, the authors constructed the usual Wald type 

X2-test to determine whether D22 =  0- However, as observed by Cragg and Donald [19], 

the asymptotic normality result of Gill and Lewbel is incorrect, except for special cases. 

Cragg and Donald [19] studied an appropriate modifications of Gill and Lewbel test. We 

will now summarize their rank test and apply it to our matrix ©o-

Let ©o(£) be the matrix obtained from the matrix 0o after L  steps of Gaussian elim

ination procedure with complete pivoting. More precisely, a t each step * =  1, . . . ,  L, the 

rows and columns of the matrix ©o(* — 1) (with 0o(O) =  0o) are permuted according 

to complete pivoting and then the Gaussian elimination procedure is applied to the ith  

column making the elements in rows i -F 1,. . . , G  zero. The m atrix So(L)  can then be 

expressed as

where f in  (L) is a  L x L upper triangular matrix, and Vl\2 (L) and SI2 2 (L) are L  x {d — L)

rank of a  matrix. Let 0 O be the estim ator of the matrix © 0  and let also L, D (with the 

corresponding submatrices D n and D22) and U be the matrices in the LDU decomposition 

of ©o- The basic idea behind the test of Gill and Lewbel is that the matrix ©o has rank 

Lq if and only if the submatrix D22 >n the LDU decomposition is identically zero and the

To do so, Gill and Lewbel [38] first stated that, when the m atrix © 0  has rank L q, D22

f in  (L) fll2(£r)

0 D22(£)
(5.4)
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and (G — L) x (d — L) matrices, respectively. As shown in Cragg and Donald [19] (to get 

a feeling for this result, consider the case G =  d  =  2 and rk{©o} =  1), one has:

Lem m a 5.1.1 The matrix ©o has rank L q i f  and only i f  S12i{Lq) =  0.

Let now ©o (L) be the matrix ©o after L  steps of Gaussian elimination procedure with 

complete pivoting as in the case of ©o, and Qij(L) be the submatrices in the corresponding 

representation (5.4). As proved in Cragg and Donald [19], when L =  rk{©o}, the matrix 

^ 2 2  ( L q ) is asymptotically normal.

Theorem  5.1.1 (Cragg and D onald) Under the assumptions o f Theorem 4-2.2, when 

L = rk{©„},

\ZNh™vec(n2 2 (L)) 4  Af(0,n(L)W0n(L)'), (5.5)

where W q  =  ( Q q 1 ® EJII-Kll! 15 variance-covariance matrix in Theorem 4-2.2 and,

with matrices Qij, i , j  =  1,2, defined below,

n(L) = (-©21 (L)eu(L)-1 Ig- l) ® ( - e l2(L)en(L)-1 id- L). (5.6)

In the case when a complete pivoting is not used to obtain the matrix ©o (L), the

matrices © 11,©12, © 21 an d © 22 in (5.6) a r e l x l ,  Ly.{d—L), (G —L)x.L  and (G—L )x (d —L),

respectively, and appear in the following partition of the matrix ©0 ,

In the case when a  complete pivoting is necessary to obtain the m atrix ©o(L), the rows 

and columns of © 0  can be permuted in advance so that a complete pivoting becomes 

unnecessary. (One needs however to take these permutations into account for the limit 

variance-covariance matrix.)
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Let now ©y be the corresponding estimators of submatrices ©y and Wo be the esti

mator of Wq. Consider the Wald type test statistic for the matrix fi22(.L), namely,

f(© 0,£ )  =W /lmvec(fi22(L)), (^ (L )W o ^(£ ),) vec (622(L)), (5.8)

where II(L) is defined as in (5.6) by using the matrices 0 y . The following result, which 

follows immediately from Theorem 5.1.1 and the discussion above, can be used to test the 

hypothesis H q : rk{©o} <  L  against the alternative H i  : rk{©o} > L. The notation x 2(A:) 

stands for the chi-square distribution with k  degrees of freedom.

T heorem  5.1 .2  Under the assumptions of Theorem J^.2.2, (i) when L <  rk{©o}, we have 

f  (©o, L) — oo and (ii) when L  =  rk{©o}, we have £(©o, L) x2((Gr — I*)(4 ~  L)).

5.1 .2  M in im u m -x 2 te s t

The minimum-x2 test for the rank of a  matrix was introduced and developed by Cragg 

and Donald [18, 19, 20]. Supposing that the m atrix of interest is ©o =  ©(z) for fixed z, 

the minimum-x2 test is based on the following statistic.

Definition 5.1 .1  (Minimum-x2 statistic) Let

C{Qq,L)  =  N h m min vec(©o — ©)'W0~1vec(@o — 0)
rk{©}<£,

=  W/im||lif||2 2 min vec(©o — ©)/(Qo 1 ® S )-1vec(©o — 0 ) . (5.9)
rk{0}<£,

The matrix Wo =  (Q^-1 <0S)||ff ||2 in (5.9) above is an estimator for the variance-covariance 

matrix Wo =  (Q^"1® S)||A '||2 appearing in the asymptotic normality result for ©o (see The

orem 4.2.2). The term  “minimum chi-square” used by Cramer [21] refers to a  minimization 

of an expression of the type g'Wg. (See also Ferguson [33] and Rothenberg [90].)

Remark 5.1.1 The minimum-x2 statistic for the rank of a matrix can be obtained by 

using a standard generalized method of moments (GMM). The GMM approach introduced
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by Hansen [47], is based on the fact that a statistical model implies a set of orthogonality 

conditions. The GMM estimator is deduced from these orthogonality conditions.

The minimum-x2 test for the rank of the matrix 0o is based on the following result 

which provides asymptotics of the test statistic C(Qq, L) in the case when L < rk{0o}, 

L  =  rk{©o} and L > rk{0o}. We will prove the asymptotics for the first two cases by 

adapting and providing more details in some proof of Cragg and Donald [18, 20]. The 

asymptotics for the third case can be proved as in Theorem 1 of Cragg and Donald [20]. 

We omit its proof because, in the next section, we will prove a stronger result. (Recall also 

that a stochastic dominance £ <d t) means P(£ >  x) < P(rj > x) for all x  € R.)

Theorem  5.1.3 (Cragg and D onald) Let L q =  rk{© o}- Then, under the assump

tions of Theorem 4-2.2, we have (i) when L < L q , C ( © o , L) — oo, (i i) when L  =  L q , 

C(©o,£) -></ x 2((G ~  Lo){d — L 0)), (Hi) when L > L0, C(&o,L) -¥d f0, where fo <d 

X2 ( ( G - L ) ( d - L ) ) .

PROOF: Part (i) follows since

C(©0, L)(N hm)~l ||1C||22 min vec(©0 -  ©)'(Qo 1 ® E ) - 1vec(©0 -  0 )  >  0rk{©}<£

for L < L q and N hm -> 0 0 . Consider now part (ii). Restriction rk{©} < L  in (5.9) can 

be expressed as

© =  (01 ©!=!), (5.10)

where © 1 and Si are any G x L  and L  x (d — L) matrices, respectively. This shows that

there are GL  +  L(d — L) = : s  free parameters p  =  vec(©i, S i)  and hence

C(©o, L) =  N h m m in vec(0o -  0(p))'W ,f 1vec(0o — Q(p)), (5.11)
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where 0 (p ) =  (©i © i—i). Let now B(n)  be a Gd x s m atrix defined by B(n)  =  

dvec(Q(fi))/d/j.. One can obtain from (5.10) that

B M  =  (  /C I °O L ^ - L )  \  (5 , 2)
\  = 1  <g> Ig Id-L ® © 1  /

Since rk{©o} =  L, we have ©o =  0(/io) for some no and, moreover, the corresponding

submatrix ©i has full column rank. In view of (5.12), we obtain that the matrix B(no) is 

of full column rank, tha t is, rk{£?(/i0)} =  s.

Let £  be p minimizing the expression on the right-hand side of (5.11), that is,

C (0 O, L) = N hmvec(©0 -  ©(/i))/W?0- 1vec(©o -  ©(£))• (5-13)

We have n -* no m  probability. Observe now that, by using the Taylor expansion and 

n  —>p fiQi we have

vec(©0 -  ©(£)) =  vec(©0 -  ©(/io)) -  B(/jo)(a* -  A*o) +  oP(l)- (5.14)

The first order conditions for minimizing (5.11), together w ith (5.14), imply that

0 =  B (n y w 0' lvec(e0 -  ©(£))

=  S(/xo)'W :o"1vec(0o -  © (/io)) -  B i n o Y W ^ B M i H  ~  Ho)  +  op ( l )

and hence that

fi -  no =  -  ©(/i0)) +  op(l). (5.15)

By substituting (5.15) into (5.14) and then (5.14) into (5.13), we get that

£ (© 0,L) =  Ar/imvec(©0 -  e (n o )) 'W o 1/2-
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• {led ~  W o l/2 B ( n 0 )(B(nQy\V0- 1 S (Mo))~1B(/xo),W?o“ I/2)  WVl/2vec(©0 -  ©fao)) +  °PU)

=  N hmvec(©0 -  e M Y W - l/\ l Gd -  -  ©(/x0)) +  op( 1),

 1 /2
where Ao =  Wo B(f*o)- By Theorem 4.2.2 and since the matrix B(fio) or the m atrix Aq 

has full column rank, we obtain that

C ( e o , L ) - ^ x 2(Gd-rk{fl(/io)}) = x 2( ( G - I , ) ( d - L ) ) .  □

5 .1 .3  C o n n e c t io n  to  eigenvalues

In this section, we relate the minimum-^2 statistic C(©o, L) to the eigenvalues of some 

random matrices. This connection will allow us to state an asymptotic result for the test 

statistic C(©o, L)  which is more accurate than tha t in part (Hi) of Theorem 5.1.3.

T heorem  5 .1 .4  (Connection of minimum-x2  statistic to eigenvalues) We have

G - L

d(Q0,L) =  ;v/im| | iq 2 2 Y ,  (5-16)
»=i

where 0 <  Ai <  A2 <  • * • <  Ac are the eigenvalues of the matrix

f 0 =  ©0Qo©oS-1 . (5.17)

P roof: The proof uses some ideas of the proof of Theorem 3 in Cragg and Donald [18]. For

notational simplicity, we will omit the variable z  in the proof. The restriction rk{©} <  L

can be written as

E© =  0, (5.18)
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where c: is a (G — L) x G  matrix with its G — L  rows linearly independent. Moreover, after

a  proper normalization, we can assume that E satisfies

5ES ' =  IG- l - (5.19)

Now, the restriction (5.18) can be written as vec(E©) =  0 or, by using the formula 

vec(AB) = (Ip 0  A)vec(.B) for a  m  x n matrix A and a  n  x p m atrix B, as

(Id 0  E)vec(©) =  0. (5.20)

When E is fixed, after a  simple manipulation with Lagrange multipliers, the minimum 

value of the function vec(©o — ©)#(Qq 1 ® S )-1vec(©o — @) under the linear constraints 

(5.20) on 0 , can be expressed as

T  = ((Id ® E)vec(©0)) '( (Id <8» E)(Q~l ® E)(/„ ® H ) ') '1^  «> H)vec(©0))-

By using (Id ® E)vec(©o) =  vec(E©o), the formulas (A ® B )(C  ® D) = A C  0  B D  and 

(A 0  B )~ l =  A-1 0  B ~ l , and also the condition (5.19), we can simplify T  as

T  =  vec(E©0)'(Qo ® /c-L)vec(E© 0).

By using the formula t r {A B C D }  =  (vec(D,))/(C,0  A)vec(B) where tr{-} denotes the trace 

of a  matrix (see, for example, Theorem 3 on p. 31 in Magnus and Neudecker [73]), we can 

further rewrite T  as

T  =  tr{E©oQo©o=/}-
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The minimum-x2 statistic C(©o, L) can then be obtained by minimizing N h m\\K \\2  

under the constraint (5.19) on S, that is,

C (0 O, L) =  N h m \\K\\i2  min tr{E©0<?o©G='}
=XZ.’=1G- l

=  N h m \\K\\2 2 w min tr{ X 'E - l/2©0Q o© o£-I/2* } ,A A =/(7_^

where, in the last step, we made the change of variables X '  =  E E 1/2. Finally, by using the 

formula
k

min t r {X 'A X }  =  A*,
X ' X = l k L J ^

1=1

where Ai <  - • • <  An are the eigenvalues o f a n x n  matrix A  (see, for example, Theorem 

13 on p. 211 in Magnus and Neudecker [73]), we conclude that

G - L

C ( e 0 , L ) = N h m\\K\\2 2 J 2 *i’
t=i

where 0 <  Ai < • • • <  A<j are the eigenvalues of the matrix S -1 /2©oQo©o£-1/2. (The eigen

values Ai are all positive, since the matrix E ^ ^ Q o Q o © ^ -1 2̂ semi-positive definite.) 

It is easy to see that A,-, i = 1 , . . . ,  G, are also the eigenvalues of the matrix ©oQo@o£-1 , 

which yields the result. □

The matrix To in (5.17) is a  consistent estimator for the m atrix

T0 =  © oQ o© oS_1 = : T o E " 1. (5.21)

Its use for rank tests can be clarified by the following elementary lemma.

L em m a 5.1.2 The matrix ©o has rank Lq i f  and only i f  the matrix To =  ©oQo©o has G — 

L q zero eigenvalues, or if and only i f  the matrix Tq =  TqE-1 has G — L q zero eigenvalues.
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PROOF: Lemma follows from the following equivalence relations: rk{©o} =  L q if and 

only if rk{©oQo^2} = L q if and only if there are G — L q linearly independent vectors 

Cj, j  =  1 , . . . ,  G — L0, such that c^QoQ^ / 2  =  0 if and only if |c£©oQo^2|2 =  ^jQoQaQ'oCj =  

cfjToCj =  0, j  = 1 , . . .  ,G — L q, if and only if the matrix To has G — L q eigenvalues equal 

to 0 (or 0 is the eigenvalue of To with the multiplicity G — L q) if and only if the matrix 

To =  T oS -1 has G — L q eigenvalues equal to 0. □

The following lemma will be used to improve on Theorem 5.1.3. I t follows directly from 

Theorem 3.1 in Robin and Smith [89] and Theorem 4.2.2 above.

Lem m a 5.1.3 (Robin and Sm ith) Under the assumptions of Theorem 4-2.2, the nor

malized eigenvalues A/7im||.K'||̂ '2Ai, * =  1, • ■ •, G — Lq, of the matrix To in (5.17) have the 

same limiting distribution as the ordered eigenvalues of the matrix

NhmcG_L o(©0 -  eQ)Dd-LoD'd_Lo(Q0 -  eQycG-L0, (5.22)

where a G x (G — Lq) matrix C g - l 0 an^  a d x  (d — Lq) matrix Dd-L0 are defined below.

To define the matrices C q - L q ami D a - L o  in Lemma 5.1.3, let c,-, i  =  1 , . . . ,  G —  L q , be 

linearly independent eigenvectors corresponding to the G — L q zero eigenvalues of the matrix 

© oQ o0o^-1 (see Lemma 5.1.2 above) and let d i ,  i  =  1 , . . .  , d  —  L q , be linearly independent 

eigenvectors corresponding to the d  —  L q zero eigenvalues of the m atrix © qS-1 ©oQo (the 

number o f zero eigenvalues can be obtained as in the proof o f Lemma 5.1.2). One may 

suppose after a proper normalization that cjSc,- — L q , and d[Q0 l d j  =

S i j ,  i , j  =  1 , . . . ,  d  — L q , where =  0 i f  i  i=- j ,  and =  1 if  i  =  j .  Then, the matrices 

C g — L q and D d - L 0 are defined as

Gg—Lo (*-1, • • • i^ c—to)> L)d—L0 — {d\, •. • ,dd—Lo)j (5.23)
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and they are normalized by

c ’g -L o ^c g-Lo = Ig-Loi D'd-L0 Q o lDd-L0 = Id-Lo- (524)

We can now state and prove an asymptotic result for the m i n i m u m - ^ 2 statistic which 

improves on part (Hi) of Theorem 5.1.3. Let y n xm, n ,m  >  1, be a n  x m  m atrix with 

independent Af(0,1) entries and let Ai(3^Xm) <  • • <  An(>,2xm) be the eigenvalues of the 

matrix y nxm 3^nxm3^nxm‘

T heorem  5.1 .5  Under the assumptions of Theorem J .̂2.2, when L  > rk{©o} =  Lq,

G-L
5 (§ 0 ,£ )  4  E  - W f c - M x y - t . ) )  S  X2((G  -  L)(d -  £)), (5.25)

1=1

where the stochastic dominance in (5.25) is, in fact, equality in distribution for  L  =  L q.

R em ark  5.1.2 Observe that, by (5.25), lim P(C(© o, L) > x) < P (x 2((G — L)(d  — L)) > 

x) for all x. This relation can be used in practice to choose the critical value for the test 

statistic C(©o, L).

P r o o f :  Let Y0  =  \ZNhm C'g-l0(®o ~  )L>d  Ij0 so that the matrix in (5.22) can be

expressed as VbVo- It follows from Theorem 4.2.2 th a t

vec(Po) - A  ^ ( 0 ,  (D'd_ LQ ® C'G_ LQ)WQ(Dd. Lo ® CG- Lq))

=  AT(0, (D'd_LoQZlD d- Lo) ® (C'g_LqLCg- l0))

=  f f (0 , Id-L o ® Ig-L q) =-A/*(0i^(d-Lo)(G-r,o))» (5.26)

where in the last two equalities we used the expression (4.19) for W q and also the two 

relations in (5.24). The convergence (5.26) shows th a t Yq y(G-L0 )x(d-L0)- Hence, by 

Lemma 5.1.3 above and the continuous mapping theorem we obtain that the convergence 

in (5.25) holds.

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

76

We still need to establish a dominance result in (5.25). To do so, we will use some 

ideas from the proof of Theorems 1 and 2 in Donald [28]. By using the Poincare separation 

theorem (see, for example, Magnus and Neudecker [73], p. 209, or Rao [84], p. 65), we

obtain that M J ;(C-£,o)x(d-£.o)3;(G-Lo)x(d-£o)) — X(d-Lo)y { G - L 0 ) x ( d - L 0 ) ^  ®°r

* =  1 , . . . ,  G —L, and any (G — L q ) x (G —L )  matrix B  such that B 'B  =  I g - l -  N ow take B  =  

(0(G-£.)x(L-Lo) I g - l Y  and note that B'B =  I g - l -  Observe also that B 'y{G — L o ) ' x ( d — L o )  —d  

y ( G - L ) x ( d - L 0 ) and hence

Finally, by using the formula Yli=i ■*»' =  tr{>!}, where A  is a  n  x n  matrix and A j, i =

1 , . . . ,  n, are its eigenvalues, we obtain that

(5.27)

Since, for i =  1 , . . . ,  G  — L, we have

where the last stochastic dominance is obtained by using the same arguments as to get

(5.27), it follows that

(5.28)
t=i i=l

n

tT(yfG-L)x(d-L))

vec 0>(G-L) X (d-L) )'vecO>(G_L) x (d_ L)) 

X2 ( ( G - L ) ( d - L )),

which together with (5.28), yields the stochastic dominance result in (5.25). □
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R e m a rk  5.1.3 Anderson [8, 7, 9] (one should also mention Hsu [53]) was the first author 

to study test statistics for the rank of a matrix based on eigenvalues of some random 

matrices. In the situation considered by Anderson, the matrix ©o of an unknown rank is 

a  regression coefficient m atrix in a  multivariate linear model, where the noise variables tire 

assumed to be normally distributed. Supposing, as in (4.19), that the limiting variance- 

covariance for ©o has the Kronecker product form Wo =  Qo ® E_1, Anderson has also 

found that, under the null hypothesis rk{©o} =  L, the limit of properly normalized test 

statistic (5.16) is a x 2( ( ^  — L)(d  — L)) random variable. (Hence, this result is a  special 

case of Theorems 5.1.3 and 5.1.5.) The assumption of normality found in Anderson [8, 

7, 9] allows for techniques inherent to normal distributions which cannot, be used in more 

general settings (e.g. in the setting of this thesis). Despite this restriction on distributional 

properties of the underlying noise variables, the work by Anderson played a m ajor guiding 

role in later developments related to rank tests of a  matrix.

R e m a rk  5.1.4 The minimum-x2 test statistic, when expressed in terms of estimated 

eigenvalues is seen to be a  special case of rank tests developed by Robin and Smith [89]. 

As in (5.16) and (5.17), let A, be estimated eigenvalues of the matrix ©oQo©o^-1 > where 

Qo and E are consistent estimators of some matrices Qo and E. In contrast to (4.19), 

the matrices Qo and E in Robin and Smith [89] are not necessarily taken as Kronecker 

product factors for the asymptotic variance-covariance matrix Wo of ©o- They can be 

chosen to suit one’s interests which depend on the situation at hand. Under some standard 

assumptions (like asymptotic normality of ©o), Robin and Smith [89] found asymptotic 

limits of some functionals h(z) (e.g. h{z) =  z  as in (5.16) or h(z) = log(l -I- z) related to 

likelihood ratios) of estimated eigenvalues A,. The limiting distribution turns out to be a 

weighted sum of x 2(l) random variables, where the weights are eigenvalues of some matrix 

involving W0 and also C g - l 0 an<l  Dd-L0i which are defined after Lemma 5.1.3. The major 

departure from earlier works is that the limit variance-covariance matrix Wq need not to 

be assumed of a  full rank. Robin and Smith [89] subsequently used their asymptotic results
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to construct and apply tests for the rank of a matrix. The matrices Wo, C g - l 0 and D^-Lq-, 

which appear in the characterizing limiting distribution, are replaced in practice by their 

empirical counterparts.

5 .1 .4  O ther te s ts

In this section, we briefly describe two other tests for the rank of a  matrix available in the 

literature, namely, the asymptotic least squares test and the test based on a singular value 

decomposition.

Asymptotic least squares test. Gourieroux, Monfort and Trognon [44] and Chamberlain 

[16, 17] showed that many estimation and hypothesis testing problems in statistics can be 

formulated in terms of a set of relations f(a,{3) = 0 between p  parameters of interest a  

and q auxiliary parameters /? for which y/n((3n — Ao) —►</ Af(0, Jo). The related estimator of 

a , called the asymptotic least squares estimator (ALS estimator, in short), is then defined 

as

a  = a rg m in /(a ,A i)5 /(a ,/3 n ) ,
a

where S’ is a consistent estimator of

Under suitable conditions, the ALS estimator is strongly consistent, asymptotically normal 

and is asymptotically equivalent to some other estimators used in statistics. The hypothesis 

testing problem related to the asymptotic model / ( a ,  A) =  0 is that of testing the hypoth

esis Ho : 3 a :  / ( a ,  Ao) =  0. The corresponding test statistic, called the ALS statistic, is 

defined by

C 'a l s  =  / (a ,  An) s  f ( a , / 3 n ) .
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Under the null hypothesis and some suitable conditions, the limit  of the ALS statistic is a 

^ -d istribu tion . For more information on ALS estimators and related hypothesis testing, 

see the papers mentioned above and  also Gourieroux and Monfort [42] and Gourieroux, 

Monfort and Renault [43].

The ALS procedure was applied to testing and estimation of rank of a  matrix by Robin 

and Smith [88]. Supposing that th e  matrix of interest is our G x d  m atrix 0o, let ©o (L) 

be the m atrix obtained from ©o as in Section 5.1.1 after L  steps of Gaussian elimination 

procedure with complete pivoting. Then,

/  f i u ( L )  Q u (L )  \
0o(L) =  = ( « ! (L) Sh(L)),

\  0 q 2 2 ( L )  J

where f l i(L )  = (Qn(L) 0)' and Q2 (L) = (fl\2 (L) fl22(L))'. Observe now that the

hypothesis H q : rk{©o} <  L  can be rewritten as H q : there is Hi such tha t Q2 (L) =  flx(L)Ei 

or, by setting

/(E x , n x(L ), n 2(L)) =  n 2(L) -  ni(£)E i, (5.29)

as H q : 3 Ei : /(E x,fii(L ), fl2(L)) =  0. The relation (5.29), when equated to 0, is then 

asymptotic model in the ALS procedure for rank testing, where S i are the parameters of 

interest and f li(L), fl2 (L) are the auxiliary parameters. The corresponding ALS estimator 

Ei is defined as Ex minimizing

N hmvee(n2(L) -  nx(L)Ex)'Svec(ft2(L) -  ftx(L)Ex), (5.30)

where

<? -  f  dvec(n2(L) -  ^ ( D E x / ^ . x  ^  „ tt2 dvee{Sl2 {L) -  * M £ )S i)y 1 
V dvec(ftx(L),n2(X)) ® ^11*112 dv ec(Q x W ,n 2 W )  J

= ((-(E x  ®IG) I d - L ® I G){QZl ® m K \ \ l { - { E . l ® I G) I d - L ® I G)')~l .
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The corresponding ALS test statistic is defined by substituting Hi into (5.30), namely,

C als(0 o,£ )  =  N h m \\K\\^2 vec{Si2 {L) -  f t i(L )§ i) ' •

• ( ( - ( “ l <8* I g ) I d —L  ®  I g ) ( Q q  ̂ ®  ^ ) (  (“ 1 ®  I g ) I d - L Q l G ) ' ^

-vec

One may show that, under suitable conditions and under the null hypothesis, the ALS

hypothesis testing.

R em ark  5.1 .5  The ALS method is particularly appealing in practice because it is applied 

in the same way as the generalized least squares method. More precisely, to compute 

the ALS statistic Cals(©o»I') in practice, one first computes the ordinary least squares 

estimator H ols by minimizing (5.30), where S  is replaced by the appropriate identity 

matrix. One then substitutes the obtained H ols into S  and minimizes (5.30) again but 

this time by using this new S  to obtain E gls- It Is this estimator Egls of which is used 

in practice to compute the test statistic Cals(0O i L).

Singular value decomposition based test. Ratsimalahelo [86] constructed a  rank test 

based on a singular value decomposition (SV decomposition or SVD, in short) of a matrix. 

Suppose that the matrix of study is a  G x  d  matrix @o of rank L q . In a  SV decomposition, 

the matrix @o is expressed as a  product o f three matrices

The matrix \I>i =  diag{V>i,• • ., V’t-ol ni (5.31) is diagonal such that if>i > ••• > >  0

and ipf, i  =  1 , . . . ,  L q , are the non-zero eigenvalues of the matrix ©o©o (or> equivalently,

test statistic has also a  x*((G — L)(d — L))  limit distribution. This result can be used in

© =  C V D '  =  C (5.31)
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the matrix 0q0o)- Since the rank of the matrix ©o is assumed to be L q , the matrix \&2 is 

identically zero. If the rank of ©o were assumed to be greater than L q, say L  >  L q , then

2 =  I dia^ o - K  • - -»'f’L } 0 
\  0 0

where i p f ,  i  =  L q 4- 1, . .  - ,  L ,  are the rest of the non-zero eigenvalues o f  0 o© o. The matrices 

C  and D in (5.31) are G  x G  and d x d orthogonal matrices, respectively. The matrix 

C  is made of G linearly independent eigenvectors o f the matrix ©o©o and the matrix D  

consists o f d linearly independent eigenvectors of the m atrix 0q©o- For more information 

on singular value decomposition, see Golub and Van Loan [39] and Stewart and Sun [98]. 

Let now 0 O be an estim ator for the matrix 0q and let also

© =  CVD ' =

be its SV decomposition, where the diagonal matrix 4*1 is L  x L for some L >  1. Ratsi- 

malahelo [86] showed that, under suitable conditions, when L =  L q ,  the Wald type statistic

N\ec($2y M - lvec($2), (5.32)

where M  is some matrix and N  is the sample size, is asymptotically x2((G — Lo){d — Lq)). 

By using this asymptotic result, the author then constructed a  test to determine the rank of 

a matrix. For more details on this test and for the proof of the aforementioned asymptotic 

result, see Ratsimalahelo [86].

R em ark 5.1.6 We believe that the rank test of Ratsimalahelo [86] is a  special case of 

rank tests considered by Robin and Smith [89]. Suppose for instance that the m atrix M  

in (5.32) is identity. Then, vec(^2 )/vec('J,2 ) =  ICiL^-n where tpf, i =  L +  1 , . . . ,  G, are 

the smallest G — L eigenvalues of the matrix ©o©o- As mentioned in Remark 5.1.4, the
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asymptotic behavior of such sum statistics has been established by Robin and Smith [89]. 

Despite this fact, Ratsimalahelo [86] test would still be  interesting as it would provide a 

connection between a special case of Robin and Sm ith [89] tests and a well-known SVD 

decomposition.

C onclud ing  rem a rk s  We presented above four different test statistics for estimation of 

the rank in a matrix. Although all these statistics have the same asymptotic behavior, 

for example, they are x 2((C? — L){d — L)) in the limit when the true rank is L, it is very 

important to understand that they might and, in fact, do have different small sample 

properties. For example, it is well-known to practitioners that rank tests based on the 

minimum-x2 statistic will underestimate the rank whereas the rank estimated by the ALS 

statistic will be higher (see also Chapter 7 below). These facts are particularly useful in 

practice because they allow to get a better grip on the estim ation object. It is thus advised 

in practice to draw conclusions not based on the results of one rank estimation method 

but on the results of several of them.

5.2 Local tests for non-parametric model

In this section, we introduce and study local tests for (NP) model. The problem, formulated 

in Section 3.2, is to test the hypothesis H q : for some fixed L  and z ,  adrk{fr (-, z ) }  < L  

against the alternative H i  : adrk{F(-,z)} > L. In Section 5.2.1, we explain the basic 

idea behind the statistics used for local tests. In Section 5.2.2, we prove their asymptotics 

and, in Section 5.2.3, we draw their connections to rank estimation in symmetric matrices. 

Sections 5.2.4 and 5.2.5 contain the proof of a  result used in Section 5.2.2 and also some 

intermediate results.

5 .2 .1  P re lim in a r ies

The idea behind local tests for (NP) model lies in the following lemma.
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Lem m a 5.2.1 For some fixed z and L, we have adrk{F(-,z)} < L i f  and only i f  the 

matrix

r w  =  £ 7 (Xi,  z )F ( X it z ) F ( X it z Y , (5.33)

where y(x, z) >  0  is any real-valued function and

F{x, z) = F { x , z)E(3(Xi,z) -  E F ( X it z )p {X u z) (5.34)

with any real-valued function 0 (x ,z )  5̂  0, has G — L zero eigenvalues, or i f  and only i f  the 

matrix r ^ E - 1  has G — L zero eigenvalues.

P R O O F : The proof is similar to th a t of Lemma 5.1.2. Let us first show that adrk{F(-, z)} <  

L  implies that the matrix Tu,,- has G — L  zero eigenvalues. By Definition 3.2.1, we have 

adrk{F(-, z )} <  L  if and only if

F (x , z) =  c(z) +  A (z)H (x , z ), (5.35)

for some G x 1 vector c(z), G x  L matrix A(z) and L  x 1 vector H(x, z). Then, (5.35) 

implies that

0(x ,  z ) F { x , z)  = 0(x,  z)c(z) 4 - A(z)/3(x, z ) H ( x , z) 

and, in particular, by substituting X i  for x  and taking the expectation, that

E 0 ( X it z ) F ( X it z)  =  E 0 (X i ,  z)c(z) + A ( z ) E 0 ( X i , z )H {X i ,  z).  (5.36)

Multiplying (5.35) by E/3(Xi, z)  and subtracting from it the relation (5.36), we obtain that

F ( x , z )  =  A ( z ) ( H ( x , z ) E 0 ( X i , z )  -  E 0 ( X i , z ) H ( X i t z)).  (5.37)
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It follows from relation (5.37) that there are G — L  linearly independent vectors cy(z), j  =

1 , . . . ,  G — L, such that Cj(z)'F{x, z) = 0. This is equivalent to cy(z)'7 (x, z ) l/2F{x,  z) =  0 

and

for j  =  1 , . . . ,  G — L. Relation (5.38) holds if and only if the matrix r„ ,)Z has G — L  zero 

eigenvalues. One can, in fact, go back in the argument above which establishes the first “if 

and only if” part of the lemma. The second “if and only if” part is obvious. □

Local tests for (NP) model will then be based upon the smallest G — L  eigenvalues 

of an estimator of the matrix r ^ E -1 . As can be seen from the proof of Theorem 5.2.1 

below, the m atrix E -1 plays the role of a  normalization in order to obtain standardized 

limit laws. The weights 7 (x, z) and /3(x, z) are taken for convenience to allow for easier 

manipulations. We will take

where p(x, z) and p(x) are the densities of the vector (X, Z)  and the variable X ,  respectively. 

The idea behind the definition of the estim ator of I\i,>2 that we will consider, is as follows. 

Observe first that

E f a z Y y i X u z y P F l X u z j ) 2 = c j {z)'TVl& ( z )  =  0, (5.38)

(5.39)

E 0 ( X i ,  z) =  E ^  p(z, z)dx  = p(z) K h(z -  Zi) = : p(z), (5.40)

where p(z) is the density of the variable Z .  Observe also that

^ Y i K ^ z  -  Zi) =: T(z),E Y iK h{ z - Z i ) (5.41)
i=i
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where the first approximation in (5.41) can be explained by Proposition 4.1.1 as

E F { X i , Z i ) K h{ z - Z i )  = f  f p(xi ,Zi)F{xi ,Zi)Kh(z -  Zi)dxidzi
J  Rn J Rm

*  [  p (x i , z ) F ( x i , z )dx i =  E ^ ^ - F { X i , z ) .
J  R" P\X i)

Similarly, by Proposition 4.1.1,

Tw,z =  E ^ ^ - ( F ( X i , z ) p ( z ) - Y ( z ) ) ( F ( X i , z ) p ( z ) - Y ( z ) y  
P\x i)

«  E p {X u z){F {X i , z )p (z )  - Y { z ) ) { F { X i , z ) p { z )  - Y { z ) ) ' K h{z -  Zi)

and, since E{Ui\Xi,  Zi)  =  0,

Tw,z *  E p (X i , z ) (F (X i , z )p ( z )  -  Y (z ) ) (Y iP(z) -  Y { z ) ) 'K h{z -  Zi).

Taking j  ±  i  and using Proposition 4.1.1, we may get a further approximation of as

rWtZ « E ( F ( X j ,  Zj)p(z) -  Y (z) ) (Y iP(z) -  Y ( z ) Y K h{Xi -  X j ) K h{z -  Z i ) K h(z  -  Zj).

Then, by using E { U j \X i ,Z i ,X j ,Z j )  =  0 once again and the approximations (5.40) and

(5.41), we obtain that

Tw,z «  E(Yj p ( z ) - Y ( z ) ) ( Y ip ( z ) - Y ( z ) y k fl( X i - X j ) K h( z - Z i ) K h( z - Z j )

»  E(Yjp (z)  -  Y(z))(Yip(z) -  Y ( z ) y k h(Xi -  X j ) K k{z -  Z i ) K h(z -  Zj).  (5.42)

Based on these approximations, we then  define the estimator of r„ ,iZ as follows.

D efin ition  5.2.1 (Estimator fo r local tests in (NP) model) Let

1 N _ _
= N ( N  _  n - -  Y(z) ) (Y jp{z )  -  Y { z ) ) ' k h(Xi -  X j ) K h ( z  -  Z i ) K h {z -  Zj),

i^ j
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where p(z) and Y (z )  are given by (5.40) and (5-41), respectively.

For the estimator of E in r ^ ^ E -1 , we will take E defined in (4.9).

R e m a rk  5.2.1 In this section, we introduced an estimator which is potentially useful 

in testing for the adjusted rank adrk{F(-,z ) } .  Recall from Section 3.3 tha t the adjusted 

rank can be used to determine the rank of a  non-parametric demand system. In other 

applications, one may be interested in testing for the rank rk{F(-, z ) }  itself. The test 

statistic can then be introduced in a similar (in fact, simpler) way. For example, as in 

Lemma 5.2.1, one may show that rk{F(-,z)} < L  if and only if the m atrix

r w ,2 = E f r iX i ,  z )F (X it z )F (X i , zY) (5.43)

has G — L  zero eigenvalues. Then, by taking 7 (2:, z) defined in (5.39) and arguing as in

(5.42), one may arrive at the following estim ator of T „ i2,

, n

Tw’z =  nTN - 1 )  S  YiYi Kh(<X i ~  X i ) K ^ z  ~  Z i)K h{z -  Zj) .  (5.44)

Observe that the difference between T w,z and is that in the definition of r ^ ,  by 

subtracting Y (z)  from Yi, we siccount for the additive term c(z) which appears in Definition

3.2.1 of the adjusted rank. (Without c(z), Definition 3.2.1 is that of the rank rk{F(-, z)}.) 

In Remark 5.2.4 of the next section, we will state the asymptotic results for the eigenvalues 

of T„,>ZE - 1  which can be used to test Ho : rk{F(-, z)} < L against Hi  : rk{F(-, z)} > L.

5 .2 .2  A sy m p to tic s

The following result is key to local tests for (NP) model. Let Ai(z) <  - - • <  Ag ( z )  be the 

eigenvalues of the matrix r ^ E -1 . Set V (z)  =  (2\\K\\2\\K\\2p(z)4 f  p {x i ,z )2dxi) l ^2 and
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let

jv
V{z) =  ( 2 | |^ | | | | | i r | |^ ( z ) 4iV -1 £ > ( * , ,  Zi)Kh(z -  Zi) )~ l/2, (5.45)

i=i

where p(z) is defined by (5.40) and p(x, z) is given in (4.7). By Lemma 5.2.12 below, under 

suitable conditions, V(z)  is a consistent estim ator of V(z). (See also a remark following 

Lemma 5.2.12, where we provide a feeling for the estimator V(z).) Let also Zk be a 

symmetric k x k  matrix having independent normal entries with variance 1 in the diagonal 

and variance 1/2 off the diagonal, and Xi(Zk) < - • • <  A*,(2*,) be the eigenvalues of Zk in 

increasing order.

T h eo rem  5.2.1 Suppose that Assumptions (NP) L1-L4 of Sections 3.2 and 4-1 hold, and 

that

N h m + 3 n /2  ^  N h m + n /2 + 2 r  Q (5.46)

Set L(z) = adrk{F(-, z )}. Then, for j  =  1 , . . . ,  G — L(z),

V {z)N h r+n/ % ( z )  A  Xj{ZG_ L{z)), (5.47)

and, for j  = G — L{z) +  1 , . . . ,  G,

V(z)NhTn+n/2 \ j (z) A  +oo. (5.48)

The proof of Theorem 5.2.1 is given in Section 5.2.4 below. We now state and prove two 

immediate corollaries of Theorem 5.2.1 which can be used in local tests for (NP) model,

namely, to test Ho ■ adrk{F(-, z)} < L  against H \  : adrk{F(-, z)} > L. To state the first
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corollary, let

V{z)N h m + n <2
(5.49)

T h e o rem  5.2.2 Under the assumptions of Theorem 5.2.1, we have that, under the hy

pothesis H 0  : adrk{F(-,z)} < L,

G - L

(5.50)

where < 4  in (5.50) is, in fact, = 4  for L  =  adrk{F(-, z)}, and, under the hypothesis Hi : 

adrk{F(-,z)} > L, T \(L ,z )  ->p + 0 0 .

R e m a rk  5.2.2 Observe from (5.50) that the eigenvalues Aj(z), j  =  1 — L{z), of

r ^ E - 1 can take negative values, in contrast to the eigenvalues of the limit matrix T ^^E -1 

which are all positive. (Were the eigenvalues Aj(z )  necessarily positive, then the limit of 

T\{L, z) would have support on the positive axis.) This observation can also be seen from 

Definition 5.2.1 which shows that the matrix r„ ,)Z is not positive definite.

Theorem 5.2.2 is proved below. Observe that the stochastic dominance result in (5.50) 

and the divergence of the test statistic T \(L ,z)  under the alternative hypothesis can be 

used to test for the adjusted rank adrk{F(*,z)}. At a  significance level a , the hypothesis 

Hq : adrk{F(-,z)} < L is accepted if T\{L,z) < Afa (Q, 1) where A/’qCO, 1) is the smallest £ 

such that P(hf(0 , 1) > f ) =  a.

Another way to test for adrk{F(-, z )} is to consider the test statistic defined as the sum 

of squared eigenvalues, namely,

G - L

T 2 (L ,z)  =  V(z)2 N 2 h2m+n ^ 2 ( X j ( z ) ) 2. (5.51)
3 = 1
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T h e o re m  5.2.3 Under the assumptions o f Theorem 5.2.1, we have that, under the hy

pothesis Ho : adrk{jF(-, z )}  <  L,

G - L

T 2 { L , z )  4  ^ ( X A Z c - l ^ ) ) 2  < x 2 { ( G - L K G - L  +  1 ) / 2 ) ,  (5.52)
j =i

where <d in (5.51) is, in fact, =a for L =  adrk{F(-, z)}, and, under the hypothesis H\ : 

adrk{F(-, z )}  >  L, T2 (L ,z)  - + p  +oo.

Observe that by Theorem 5.2.3, MmP { f r 2 { L , z )  >  x) < P (x 2  ((G  —  L ) ( G  —  L  4- l ) /2 )  >  

x )  for all x .  The last relation can be used to choose the critical value for the test statistic  

T 2 ( L , z ) .

We now prove Theorems 5.2.2 and 5.2.3.

P roof o f  T h eorem  5 .2 .2 : The convergence in (5.50) follows from (5.47) in  Theorem

5.2.1. In order to show the stochastic dominance in (5.50), we use the proof o f Theorems 1 

and 2 in Donald [28]. B y the Poincare separation theorem (see Magnus and Neudecker [73], 

p. 209, or Rao [84], p. 65), we have K ( Z g - l ( z ) )  <  Z g - l ( z ) B )  for i =  1 , . . . ,  G  —  L ,  

where L ( z )  =  adrk{F(-, z ) }  and B  is any (G —L ( z ) )  x (G — L ) matrix such that B 'B  =  I g - l - 

Now take B  =  (0 ( g - l ) x ( l - l (.z ) )  I g - l Y  s o  that B 'B  =  I g - l - Observe that B '  z g - l { z ) B  — d  

Z g - l  and hence

1 t T ( Z c - L )  = m  0 ,1 ).V G - L

The convergence under the hypothesis Hi follows from (5.48) in Theorem 5.2.1. □
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P r o o f  o f  T h e o r e m  5.2.3: The convergence in (5.52) follows from (5.47) in Theorem

5.2.1. To prove the stochastic dominance in (5.52), observe first that

G - L  G - L

Y i  i^ j i^ G -n z ) ) ) 2 — ^j ( ^g- l ( z ) ) i  (5 .5 3 )
j=l j =I

where ^ j ( Z ^ _ L^ ) ,  i  = 1, - - •, G — L(z), denote the eigenvalues of ^ g-L{z) *n increasing 

order. Letting

B  =  (0(c_£,)x(£,-£,(2)) I g - l ) '

(Ik is a k  x k  identity matrix) and arguing as in the proof of Theorem 5.1.5, we can conclude 

that

G - L  d G - LY X^ Z G - L ( z ) )  <  Y ̂ B ' Z g - l u B H B ' Z g ^ B ) ) ,  (5.54)
j = l j = l

Since B '  Z g - l {z) B  = d  Z g - l , it follows from (5.53) and (5.54) that

xA z c - i )
j=l j=l

— ^ { Z g- l )

=  v z c ( Z C - l ) ' v v c ( Z G - l )

±  X2 { ( G - L ) ( G - L  + 1)/2),

since Z g - l  is a  symmetric matrix consisting of independent (below the diagonal) zero 

mean normal random variables with variance 1 on the diagonal and variance 1/2 off the

diagonal (use the fact 2 (N(Q, 1/2))2 =d Af(0, l)2). □

Rem ark 5.2.3 Theorem 5.2.2 is in the spirit of Theorems 1 and 2 in Donald [28]. To 

our best knowledge, a  result like Theorem 5.2.3 does not appear elsewhere in connection 

to rank testing in a  non-parametric relation. (See, however, Section 5.2.3 below.)
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R e m a rk  5.2.4 Let pj(z), j  = 1,. - -, G, be the eigenvalues of the matrix T„,zE“ l , where 

Tu,iZ is given by (5.44) in connection to hypothesis testing for R(z)  =  rk{F(-, z)}.  One 

may then show as in the proof of Theorem 5.2.1 that, under suitable conditions, for j  = 

1 R{z),

v{z)N hm+n/*pj {z) 4  A,(Zg _*(2)), (5.55)

and, for j  = G — R(z)  +  1 ,G,

v ^ N h r + ^ - f i j i z )  A  + 0 0 , (5.56)

where u(z) =  V(z)p(z)2. The convergence in (5.55) and (5.56) can be used, similarly 

to Theorems 5.2.2 and 5.2.3, to test the hypothesis Hq : rk{ ir(-,z)} <  L  against the 

alternative H\ : rk{.F(-,z)} >  L.

R em ark  5.2.5 Observe from Definition 5.2.1 and the discussion preceding it that the 

bandwidths h corresponding to X i  and Zi  play somewhat different roles. The bandwidth

corresponding to Zi allows to localize the mean r„,i2 at a fixed point 2 . The bandwidth

corresponding to X, allows to express the mean r w>z in a convenient way as a {/-statistic by 

localizing X{  at X j .  Hence, particularly in practice, one may want to distinguish between 

the bandwidths corresponding to X i  and namely, to consider the test statistic

1 N -  _  

v£j
• K hl(Xi -  X j ) K h2(z -  Z i ) K h2(z -  Zj),  (5.57)

where /ii,/i2 >  0 (compare with Definition 5.2.1). One may show that, under suitable 

conditions, the eigenvalues Aj(z)  of the matrix r ^ E -1 (where TWtZ is defined in (5.57)) 

satisfy the limit results analogous to those in Theorems 5.2.1, 5.2.2 and 5.2.3. The only 

difference is that the factor N h m^ n/2 in the normalizations o f (5.47), (5.48), (5.49) and
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(5.51) should now be replaced by

N f i ^ h ? 2. (5.58)

In our applications and simulation study (Chapter 7), we will consider the test statistic 

(5.57) and use the normalization (5.58).

5 .2 .3  C on n ection  to  rank e s t im a tio n  in  sy m m etr ic  m a tr ic e s

Observe that another way to formulate Lemma 5.2.1 is to say that adrk{fr (-,z)} < L holds 

if and only if rk{rz u)} <  L. The problem of testing for the adjusted rank adrk{.F(-, z)} 

thus becomes that of testing for the rank of the matrix TWiZ. One may ask then why not 

to use any of the rank estimation methods (LDU, minimum x2, ALS and so on) described 

in Section 5.1 directly.

In fact, the test statistic T2( L , z )  defined in (5.51) can be viewed as a minimum-x2 

statistic for the matrix r,„>2. Indeed, observe first that

T2 (L, z)  =  V( z ) 2 N 2 h2m+n & (z),
j =  l

where fij(z) = (Ay(z))2 are the eigenvalues of the matrix

( f ^ E - 1? ^ ) ^ - 1. (5.59)

Then, by Theorem 5.1.4, we have

f 2(L, z) =  V(z)2N 2h2m+n m in vec(fu>)2 -  r)'(E <8> E ) - lv e c ( f -  T) (5.60)
rk{r}<L

and hence that T2(L ,z ) looks like a  minimum-x2 statistic for the m atrix r„,t2 (compare

(5.60) and (5.9)). Observe also th a t the sample variance-covariance m atrix W{z)  in (5.9)
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is now replaced by E <8> E.

Although Ti L̂-.z), when expressed through (5.60), looks like a  minimum-x2 statistic, 

there is something fundamentally different from the situation considered in Sections 5.1.2 

and 5.1.3. The difference is that the matrix is now necessarily symmetric. This has 

a  few immediate implications. Supposing th a t one wants to start with the minimum-x2 

statistic for the m atrix directly, it may not be immediately clear what normalization 

to use and what would be the limit of the corresponding test statistic. The problem here 

is that, since r ^ .  is symmetric, its variance-covariance matrix W{z)  is singular and hence 

W( z ) ~ l is not defined. Theorem 5.2.3 and relation (5.60) show that one can, in fact, 

use the normalization (E ® E )-1 and that the corresponding limit (under the assumption 

r k { r w,z} = L) is still a  x2_cbsfribution but now with a  (G — L)(G — L + l) /2  degrees of 

freedom. Note that the number of the degrees of freedom is less than (G — L)(G — L) for 

the matrix without symmetry restrictions.

R em ark 5.2.6 To get a  feeling for the normalization (E ® E)-1 used in (5.60), observe 

first that (E ® E )- l /2 vec(ru,>z — Tu,,*) =  vec(E-1/2(ru,tZ — T ^ J E -1/2). One may ar

gue as in the proof of Theorem 5.2.1 below th a t under the conditions of that theorem, 

V(z)iV7im+n/2E - l /2( r u,iZ — r,i,iZ)E-1/2 converges in distribution to the matrix Z g which 

is defined in the beginning of Section 5.2.2. Hence,

K(z)N7im+"/2(£ ® E ) - l/2v ec (fu,,z - Tw^) 4  vec(ZG). (5.61)

The convergence (5.61) should be enough to establish the asymptotics of the test statistic

(5.60) directly without referring to Theorem 5.2.3, but the author is not aware of the proof.

R em ark 5.2.7 The problem of testing whether the first (G — L) eigenvalues of the type 

(5.59) matrix are equal to zero (or, equivalently, testing for the rank of r„,iZ) has been also 

addressed by Robin and Smith [88, 89]. See also Remark 5.1.4. These authors have also 

found that the symmetry restriction on a  m atrix leads to (G — L)(G — L + l) /2  degrees of
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freedom for the limiting ^-d istribution . ggg particular the paper by Robin and Smith

One may ask next what happens, for example, w ith the LDU and the ALS methods 

when matrices of interest are symmetric. Is it then enough to replace the normalization

related questions for the future work.

5 .2 .4  T he p ro o f o f  T h e o r e m  5.2.1

In this section, we prove Theorem 5.2.1 which describes the asymptotic behavior of the 

eigenvalues used for local tests.

P r o o f  o f  T h e o r e m  5.2.1: The proof of the convergence (5.47) uses ideas of the proof 

of Lemma 2 in Section 2.2 of Donald [28]. To simplify notation, we set

matrix W(z) by £  <g> £  as in the case of m in im u m -^ 2 statistic and compare the result to 

a  ^-d istribution with (G — L)(G — L + l)/2  degrees of freedom? We leave this and other

K ij  = K h(Xi -  Xj),  K z,i =  K h{z -  Zi), (5.62)

and

Y , & n X u Z i , z ) K h{ z - Z i ) ,A F(z)

'$2 u iK h( z - Z i),
i= 1

(5.64)

(5.65)

(5.63)

where

AF (x i ,  Zi, z) =  F { n ,  Zi) -  F(xi ,  z). (5.66)
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By using Definition 5.2.1 of ]?„,,* and by writing Yi =  F ( X i , Zi) + Ut = F ( X Z, z) 4- 

(F(X{,  Zi) — F ( X i , z ) )  4- Ui, we can express the matrix TWiZ as

=  A i  4- S A 2 4- S2A s

— A\  4- S(A2  4* A 2) "b *^(-^3 "b A$ “F A 4 ), (5.67)

where

5 = . 1 . (5.68)
\ /N h m+nl2

A i  = A i,  A 2  =  A 2  4- A'2, A 3  =  >13 4- A '3 4- At, the first order term  Ai is

^ 1  =  P(z)2 Ai,i -  p (z )F (z )A i i2 -  p {z)A \2 F{z)’ -  F (z )F (z ) '  A x,3, (5.69)

where
1 N

Ax, 1 =  N ( N _ l)  £ F ( X „ ^ F ( X 1 , z Y K „ K z,,Ki ,1, 

1 ^
A l -2 =  JV(JV -  1) £  F (* i ’ z)‘K iiK z,iKz j ,

1 N 
i^1,3 =  sr( /v — n  5 2 XiiX z<iX zJ'

the second order term -A2 is

A2 =  5 - 1p(^)2A2 tl- ^ - 1p(z)A2,2F(z), +  r 1p(z)2A2)3 - ^ - 1p(^)A2>4F(z),

-  r f - ^ z ) (S F (z )  4 - F ( z ) ) ^ x>2 +  < r l (AF(*) + U (z ) )A l,3 F(z)', (5.70)

where
1 *

^ 2,1 =  5 2  A F { X "  Z)F ^ ’ z ) ' K i j K ZiiK Zj ,
i^ j
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1 *  -  
A2'2 = Wi n  - 1) 5 3 A F (X i* z ) f ( z yK i jKZjiKzj ,

A 2 ’3 ~  N ( N  — 1) 5 3  UiF{Xj, z) K i jK Zt{KZrj,
i^j

1 N -  
A 2 , 4  = N ( N  — 1) 5 3  UiF{z ) K ijK zj K zj ,

the third order terms A 3  and A4  are

M  = 5~2 p(z)2 A 3ti +  S~2p(z)2 6 ~2 A 3,2 -  S ~ 2p (z ) ( K F ( z ) +  U(z))A 2 2

-  6 ~ p(z)(AF(z) + U{z))A!2A +  S~2 (AF(z)  +  U (z))(AF(z)  +  U{z))'A x̂  (5.71)

where

4° ’ =  2 N ( N - l )
1 N

a 3 ,i = ^ w — ^ ^ 2 A F ( X i,Z i ,z )A F (X j ,Z j , zY K ijK z,iK zJ , 
«W

and

1 "
A 3,2 = -N ( N _ l) Y 1  * F ( X i ,  Z ^ z W ' K i j K ^ j ,

* * =  N ' l T - l )  Eijtj
(5.72)

Recall that we are interested in the eigenvalues of the matrix r ^ ^ E -1 . These are also 

the eigenvalues of the matrix J T ii,j2J ( J 'E J ) -1 , where J  is any orthogonal matrix (that is, 

J ~ l = J')- The idea then is to take a special J  which would allow for easier manipulations 

later. In order to choose such J ,  observe first that, by Lemma 5.2.2 below, the matrix 

-<4.i E -1 has G — L(z)  zero eigenvalues and the remaining ones are strictly positive with 

probability approaching 1. Then, since we are interested in the convergence in distribution, 

we may suppose without loss of generality that all the eigenvalues of A iE -1 are positive.
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Hence, there is an orthogonal matrix J  — J { N , z) such that the matrix

J ' = J ,A l J ( J 'E J ) - 1 (5.73)

is diagonal with the eigenvalues of A jE -1 on the diagonal. Since E is positive definite, 

there is an orthogonal matrix Jq such that JqEJo =  C, where C  is a diagonal matrix. We 

will suppose that C  = I  (otherwise, the proof goes along similar lines) and hence that 

JqUJq =  / .  Since there is an orthogonal m atrix J\ such that JqJ i =  «/, we have

J 'E J  =  J[J'qY.JoJ x =  J[ h  = I. (5.74)

Now, relations (5.73) and (5.74), and the discussion above imply that the m atrix J 'A i J  is 

diagonal with G — L(z)  zeros on the diagonal and the remaining elements on the diagonal 

strictly positive (with probability approaching 1). One can then arrange the m atrix J  as 

J  =  (Ji J2 ), where J \  is a  G x L(z) submatrix and J2  is a G x (G — L(z))  submatrix, 

in such a way that J'^AxJi =  0. Since J 2 consists of eigenvectors corresponding to zero 

eigenvalues of A i,  it follows from Lemma 5.2.3 that A 2 J2 =  0 and hence th a t J 'A 2 J  has 

its last G — L{z) columns identically zero. Similarly, the last G — L(z) rows of J 'A ^ J  are 

identically zero as well. Finally, observe also that, by using (5.74), the effect of J ’s on the 

term A 4  is such that E(J'UiUiJ) =  I.

By using E =  E 4- SB  with B = op(l) in Lemma 5.2.11, Ai = Op{ 1), * =  1 ,.. .  ,4, in 

Lemmas 5.2.5-5.2.8 below and the discussion above, 8 ~2 Xj(z) is equal to 6 ~ 2  times the j th  

smallest eigenvalue of the matrix

J ' f WySJ ( J ' t j ) - x =  J ' f ^ J V 'E J  +  a J 'B J ) - 1

=  J ' f ^ z J V  + S J 'B J ) - 1

= J'{Ai +  SA 2  +  6 2 A 3 ) J ( I  -  SJ 'B J  +  8 J 'B 2J  - . . . )

= Di +  8 D 2  4" S2 D 3  4" Op(J^),
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where D x =  J 'A i J  =  J 'A y J  is diagonal, D2 =  J '(A 2  — A \B ) J  =  Op( 1) and D3 = 

J '(A 3 — A 2 B  +  A \.B )J  =  Op(l). By applying Lemma 1 in Fujikoshi [37], we can conclude 

that Aj(z), j  =  1 , . . . ,  G — L(z),  are also the eigenvalues of the matrix

0 /  +  8D2 + 52D 3 +  Op(*3), (5.75)

where the matrices D2 and D 3 are described in greater detail below.

The matrix D2 in (5.75) is a  (G — L(z )) x (G — L(z))  matrix made of the last G — L{z) 

rows and the last G — L(z)  columns of the m atrix D 2  = J ’A 2J  — J ’A \B J .  Recall from 

(5.67) and the discussion above that J ’A 2J  is a  sum of two matrices J 'A 2J  and J'A'2 J,  

the matrix J 'A 2J  with its last G — L{z) columns zero and the matrix J'A'2J  with its 

last G — L(z) rows zero. Hence, the (G — L(z))  x  (G — L(z)) matrix corresponding to 

J 'A 2J  is identically zero. Turning to the second term  J 'A i B J  =  J 'A \J { J 'B J )  in the

matrix D2l since J ' A \ J  is diagonal with its last G — L(z)  rows zero, we obtain that the

(G — L(z)) x (G — L(z)) matrix corresponding to J 'A i B J  is identically zero as well. Then, 

D 2  =  0 and hence Aj(z ) ,  j  =  1 , . . . ,  G — L (z ), are also the eigenvalues of the m atrix

82D3 +  Op(S3)

or 5~2\j(z) = N h m+n/2\ j ( z ) ,  j  =  1 , . . . ,  G — L(z),  are the eigenvalues of the m atrix

D3  + op {1).  (5.76)

According to Lemma 1 in Fujikoshi [37], the m atrix D3 in (5.76) (or (5.75)) is a sum 

of two matrices Z?3ti and D 3 2. The first term £>3,1 is made of the last G — L(z)  rows and 

the last G — L(z)  columns of the matrix D3. The second term D3>2 involves the sum of 

some submatrices of the last G — L(z)  rows and the last G — L(z) columns of the matrix 

D2. By using the facts that A 2  =  op(l), B  =  op(l)  and a  special structure of the matrix
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J 'A i J , one can conclude that £>3 ,2  =  oP(l)- As for the m atrix £>3 , 1 , by using A3 =  op( 1), 

we obtain that it consists of the last G  — L(z) rows and the last G — L(z) columns of the 

matrix

J 'A 4J  + op( 1) =  i t i J ’U iK J 'U jY K i jK ^ K ^  + op(l).
i^j

Hence, it follows that

O l =  dN i ‘x - \ )  E  ViU'j K ljK , i K ' j  + 0 ,(1 ),

where a (G — L(z)) x 1 vector Uj =  J'Ui satisfies EUjUj =  I .  By Lemma 5.2.10 below, we 

have

V(z)D 3  A  Z G_Lo{z). (5.77)

The convergence (5.47) now follows from (5.76) and (5.77) by the continuous mapping 

theorem.

Finally, the convergence (5.48) holds, since by the continuous mapping theorem, Aj ( z )  

—> Aj(z)  in probability, where 0 <  Ai(z) <  ••• <  A<3 (2 ) are the eigenvalues of the m atrix 

Fu/,zE-1  and, by Lemma 5.2.1, Aj(z )  >  0 for j  =  G —  L(z)  +  1 , . . . ,  G. □

We conclude this section with two elementary lemmas used above.

Lem m a 5.2.2 The matrix Ai (or the matrix A \H ~l ) in (5.67) has G — L(z) zero eigen

values and the remaining ones are positive with probability approaching 1 .

PROOF: Observe first from (5.69) that

1 "  — -  
A l  =  N (N  ~ 1) £ (F(A:i’ z)?(z) “  z)p(z) -  F (z)Y K ijK ZjiK zj .  (5.78)
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By the definition of L(z) = adrk{F(-, z)}, we have

F(x, z) =  c(z) + A (z)H (x , z), (5.79)

where A(z) i s a G x  L(z) matrix. This implies that

F(z) = p(z)c(z) + A(z)H{z), (5-80)

where _ i "
H ^  =  j j ' E , B { X i , z ) K h { z - Z i).

1 = 1

By substituting Xi  for x  in (5.79), multiplying (5.79) by p(z) and then subtracting from 

(5.79) the relation (5.80), we get that

F(X i, z)p(z) -  F(z)  =  A(z)(H(Xi, z)p(z) -  H(z)).  (5.81)

By substituting (5.81) into (5.78), we further obtain that Ai  =  A(z)H iA(z)’, where

1 N — _
Hl = ^ J ^ J l m X i,z ) p ( z ) - H ( z ) ) ( H ( X i , z ) p ( z ) - H ( z ) y K ijK z,iK zj .

Since A(z) i s a G x  L ( z )  matrix, there are G — L(z) linearly independent vectors C j- (z ) ,  

j  =  1 , . . . ,  G — L(z), such that

C j ( z ) A ( z )  =  0. (5.82)

Then, AiCj(z)' =  A(z)H iA{zYcj{zY  =  0 for j  =  1 , . . . , G  — L{z), which shows that Ai 

has G — L(z) zero eigenvalues. The remaining eigenvalues are positive with probability 

approaching 1, since, by Lemma 5.2.5 below, Ai —>p and by Lemma 5.2.1, the matrix

r „ ,z has G — L(z) zero eigenvalues, and the remaining ones are strictly positive. □
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L em m a 5.2.3 The eigenvectors corresponding to G — L(z) zero eigenvalues of the matrix 

A\ in Lemma 5.2.2 are also eigenvectors for the matrix A i in (5.67) corresponding to a 

zero eigenvalue.

PROOF: Let c be an eigenvector corresponding to a zero eigenvalue of the matrix Ax- Then, 

with the notation of the proof of Lemma 5.2.2 and by using (5.82), we have cA(z) =  0. 

Observe now that A i  in (5.70) can be expressed as

x-l N   _a2 =  — —  ^ ( A F ( X i,Zi,z)p(z)+CAIp( )̂ -A F (^ ) -C 7 (2 ) ) •
t &

z)p(z) — ~F(z)YKijKZj K Zj .

Then, by using (5.81) in the proof of Lemma 5.2.2,

jf-i "  ___  _
* 5 * 7

z)p(z) -  H { z j ) 'K i j K ^ K ^  A{z)f.

Since cA(z) =  0, it follows that A i d  =  0. This concludes the proof. □

5 .2 .5  In term ed ia te  resu lts

In this section, we establish the results used in the proof of Theorem 5.2.1 above. Their 

proofs often use the notion of a  second order 17-statistic whose definition we recall next for 

later reference.

D efin ition  5.2.2 (Second order U-statistic) Let Wi, » =  1 , . . . ,  N ,  be i.i.d. random vari

ables and a s  : R x R i-> R fee a symmetric kernel (that is, a s {x ,y )  =  a s (y ,x ) ) .  Then,

C / / v = ( T )  1 Y. “nW W )  (5*83)

is called a second order U-statistic for  the sequence {Wi).
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We now give a result on the limit behavior of a  second order U-statistic which will also 

be used many many times below. This result follows easily from the proof of Lemma 3.1 in 

Powell, Stock and Stoker [82]. It is, however, often easier to use and yields stronger results 

than a direct applications of Lemma 3.1 in Powell et al. [82] itself.

L em m a 5 .2 .4  (Limit behavior of a second order U-statistic) Let U s  be a second order 

U-statistic defined by (5.83). Then,

U s -  Eapi{Wj,  Wi ) + Op +  ^ > 2)  (5 8 4 )

P ro o f: Let

2 N
UN =  E a s iW u  Wj)  +  — 5 3  ( E M W i ,  Wj)\Wi) -  E a N {Wi , W j) )  (5.85)

1 = 1

be the so-called projection of the 17-statistic U s  (see Serfling [95] or Powell et al. [82]). 

Then, as in the proof of Lemma 3.1 in Powell et al. [82],

e ( u n  -  U s f  =  ( * )  W j)2,

where

b s W ,  W j)  =  a s {Wu Wj)  -  E{aN {Wi, Wj) \Wf) -  E{aN {Wi, W j) \W j)  + E a s ( W i , Wj).  

Since E b s i W i ,  W j )2 =  0 ( E a s ( W i ,  W j )2), we obtain that

E ( u K - o Ky = o ( ^ " S )
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or

n ,W j)2\  
*  ■U v - U K = O r \ \ l E a N { ^  )■ (5.86)

Since, by the independence of E(a^{W i, W j) \ W,) for different i's and by using the formula

E { Z - E 0 2 < E e ,

E  W j)\W t) -  E aN(Wu W -̂)) j

=  j j E ( E { a N{Wu Wj)\Wi) -  EcLNiW^Wj ) ) 2  < ^ E M W ^ V r j )\Wi )’2) ^

the result (5.84) follows from (5.85) and (5.86). □

The next four lemmas concern the orders of the terms Ai, A 2 , A 3  and At in the 

decomposition (5.67).

L em m a 5.2.5 (Order of A \)  Under the assumptions of Theorem 5.2.1, we have

Ai = r ti,,2 + o p(l) , (5.87)

where A \ is given in (5.69) and is defined by (5.33), (5.34) and (5.39).

PROOF: By using (5.98) in Lemma 5.2.9 below, it is enough to show that

Ai.i =  g p(^ )2 F (X i , z)F (X i,z) ' +  Qp( 1), (5.88)

a i ,2 =  E ^ ^ - F ( X i , z Y  + o p ( 1), (5.89)

A1i3 =  E P { ^ 2  -t-Op(l), (5.90)
P\Xi)

where A i,i, A i,2 and Ai)3 are defined by (5.69). We will prove only relation (5.88) since 

the proofs of (5.89) and (5.90) are similar. We will also consider only the case G =  1, that
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is, when the dimension of a  vector F  is 1. The result in the case G > 2  can be proved by

considering each component of the matrix separately.

Observe that j  can be expressed as a second order {/-statistic (5.83) with Wi =  

(Xi, Zi) and

a N (Wi, Wj) = F (X U z )F (X j ,  z )K ljK ZAK zd.

Then, by Lemma 5.2.4 above, to prove (5.88), it is enough to show that

E a N (Wi, Wj) F (X i,  z )F (X i, z) (5.91)
P(*i)

and

E  (E (aN (W i , Wj)\Wi)2) = o(N), E a N(Wi, W j ) 2  =  o(N2). (5.92)

By using the assumptions of Theorem 5.2.1 and by applying Proposition 4.1.1, we obtain 

that

E aN( W i ,W j)=  [  d x iF (x i ,z ) {  [  f f  dzidxjdzj •
J  Rn L J R m J Rn / Rm

• F ( x j ,  z ) p ( x i ,  Z i ) p ( x j ,  Z j ) k h ( x i  -  X j ) K h ( z  -  Z i ) K h ( z  -  z j )  j
=  f  F (x i,z )F (x i ,z )p (x i ,z )2dxi + o( 1)

JRn

=  E  ( P-^ ^ )2F (X „z)F (X ,-,z )) + o ( l) ,

which shows (5.91). To show the first relation in (5.92), observe that, by using Proposition 

4.1.1,

E  ( £ ( 0 ^ ,  Wj)\Wi)2) =  E  (F (X i, z ) 2 K l iE ( F ( X j ,  z)K ijKzJ \Xi)2)

=  \\K\\%h~m f  f dudzi F (x i ,z ) 2 p(xi,Z i)K 2 ,h (z -Z i)  •
/ Rn / R m
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f  f  f  F{xj, z )p (x j ,Z j)K h(xi x j )Kh(z z j)d x jd z j \
l- /Rn J Rm J

=  \\K\\ih~m [  F{xu z)2 p(xi, z) (F(xi , z)p{ii , z ) ) 2 ctei +  o(h~m) = 0 (h ~ m).
J R»

Since N hm —*■ oc, we obtain th a t E(E(a^(W.-, Wj)\Wi)2) =  o(N). As for the second 

relation in (5.92), by setting K i^ j  =  K i^ (X i  — Xj) , Ki,z,i =  Ki,h.{z — Z ,) and by using 

Proposition 4.1.1, we obtain that

Ea„(Wi, W j ) 2  =  E F i X ^ z f F i X ^ z f K f j K l t K l j

= =  o (h ~ 2m~n) =  o(N2),

since N hm+n! 2 —> oo. □

L em m a 5.2.6 (Order of A i)  Under the assumptions of Theorem 5.2.1, we have A i  =  

op(l) , where A i is defined by (5.70).

P ro o f : We will show that

A i j  — Op ^ h  + \ j + \ j N i h2^ )  i * =  1> 2, (5.93)

Ai i =  Op (  . 1 +  - ; 1 ) , i = 3,4, (5.94)
p K V N V "  y/N 2 h2m+nJ

where A ij,  i — 1,2,3,4, are defined by (5.70). Then, by using Lemma 5.2.9 below, relations

(5.89) and (5.90), and also (5.68) and (5.70), the order of A i  can be shown to be

O ( y/Nh™+n/2+2r + y / f^ j 2 + \  .
\  y/N hm+n/2/

This proves that A i  =  op(l) since iV/im+”/2+2r —► 0 and N h m+nf 2  —► oo.

Since the proof of (5.93) is similar when i =  1 and * =  2, we show (5.93) only in the 

case i  =  2. We also consider only the case G =  1. Observe that A.2,2 is a second order
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{/-statistic (5.83) with Wi =  (Xi, Z i) and

1
aN(W i,W j)  =  - { A F ( X i , Z i , z )  + A F i X j ^ Z ^ z f i K i j K ^ K ;z  j -

To find the order of A2 r2 , we will use Lemma 5.2.4 above, in which case we need to obtain 

the orders of Eay(W i,W j) ,  E (E (aN (Wi, Wj)\Wi)2) and E a N{Wi,Wj)2. By using the 

assumptions of Theorem 5.2.1 and Proposition 4.1.1, we have

E a N(Wi,Wj) = E A F { X i ,Z i , z ) K i j K ZtiK Zj =  f  d x J  f f  f dzidxjdzj  •
J  Rn J w 1 J  Rm

- A F ( x „  z u  z ) p ( x i ,  Z i ) p ( x j , Z j ) K h { x i  -  X j ) K h { z  -  Z i ) K h ( z  -  z7 ) j =  0 ( h r ). 

Similarly, setting =  K.2 ,h.{z — Zi), we obtain that

E { E { a N{Wi,Wj)\Wi)2) < {¥ ^ E ( A F ( X i ,  Zu z)2K2,z,iE ( K ijK zJ \X l)2)

+ l1 0 - E ( K 2 tZ4 E ( * F { X j , Z j , z r f i j K ' j l X i ) 2)  =  0 (h r~m +  h2r~m) = 0 (h r~m) 

and, by setting =  K 2 ,h{Xi — /fj)> that

E aN(W,, IV,)2 <  iE A F ( X „ Z x, z f K ^ K ^ K l j

~  fj2m+n EAF(Xt, Zt,Z) K 2,ijK2,z,iK2,zj — O ^ 2 m + n  J '

Relation (5.93) with i =  2 now follows from Lemma 5.2.4 above. We will now show (5.94) 

with t =  4 when G =  1. (The proof of (5.94) with t =  3 is similar.) Observe that ^ 2,4 is a 

second order {/-statistic (5.83) with Wi =  (Yi, Xi, Zi) and

aN{Wi, Wj)  =  \{Ui  +  Uj)K i jK Zj K zj .

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

107

Since Eaw(Wi, Wj) =  0, we only need to find the orders of the terms Eatf(W i, W j ) 2  and 

E{E{as{W i, Wj)\Wi)2). By using Proposition 4.1.1, we have

E  (E(aN(Wt,W j )\Wl )2) =  ± E ( u f k l 4 E { k i jK Zj \X i )2) 

-  ^ - E ^ K l ^ E i K i j K ^ X i ) 2)  =  0{h~m)
Ahr

and

EaN(Wt, W , f  =  -jEUf K f jK t jK t j

~  2h2m+n E K 2 ,UK 2 ,z,iK2,z j  -  0 {h ).

Relation (5.94) with i =  4 now follows from Lemma 5.2.4 above. □

L em m a 5.2 .7  (Order of A 3 ) Under the assumptions of Theorem 5.2.1, we have A 3 =  

op(l) , where A 3 is defined by (5.71).

P r o o f: We w ill show that

^ . 1  =  ° p \ J • (5.95)

^3,2 =  Op Nh^  +  y jN2h2^K ^  . (5 9 6 )

where >13,1 and ^ 3,2 are defined by (5.71). Then, by using Lemma 5.2.9 below, relations

(5.90), (5.93) and (5.94), and also (5.71), one can deduce that

A 3 = Op ( N h m+n/2+2r + ~ j = =  + hr / 2  + /in/2)  .

This proves that A3 =  op(l) since ^V/im+n/2+2r —► 0 and N hm —> 0 0 .
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We show (5.95) and (5.96) for G  =  1 only. Observe that Am is a second order 17- 

statistic (5.83) with Wi =  (Xi, Zi) and

a N (Wi, Wj)  = A F ( X i ,  Zi, z ) A ( F ( X j ,  Zj ,  z )K tjK zj K ZJ.

Then, by setting K 2^j  =  K 2ih(Xi  — X j ) ,  K 2 z , =  K 2^ ( z  — Zi) and using Proposition 4.1.1, 

we have

E a s ( W i ,  Wj)  =  f  f  [  f  dxidzidxjdzj •
JRn J Rm J Rn J  Rm

- A F ( x i ,  z u  z ) A F ( x j ,  Z j ,  z ) p ( x i ,  Z i ) p ( x j ,  Z j ) K h ( x i  -  X j ) K h ( z  -  Z i ) K h ( z  -  Z j )  =  0 ( h 2 r ) ,

E  (.E ( a v ( W i , Wj) \Wi)2) < E ( A F ( X i ,  Z„ z ) 2K l i E ( A F ( X j ,  Zj ,  z ) K i j K z J \X i)2)

= l¥ ^ - E ( A F ( X i , Z i , z ) 2K 2,z, iE ( A F ( X j , Z j , z ) K i j K Zxj\Xi)2) = 0 ( h 3r- m )

and

E a N (Wi, W j )2 =  E A F ( X i ,  Z t , z )2A F ( X j ,  Z j ,  z)2K ? j K l i K 2j  

=  ^ ^ ^ ■ E A F ( X i , Z i , z ) 2A F ( X j ,Z j , z ) 2k 2,ijK2,z,iK 2,zd = 0 ( h 2r- 2m- n).

Relation (5.95) now follows from Lemma 5.2.4. As for A^^., it is a second order fZ-statistic 

(5.83) with Wi  =  (Yu X {, Z,-) and

ZJ-aN (W i ,W j)  = ± ( A F ( X i , Z i , z ) U j  + A F ( X j , Z j , z ) U i ) K i j K ZtiK ; 

Since E a ^ ( W i ,  W j )  — 0 and, by Proposition 4.1.1, 

E  (E ( a N (W i ,W j) \W i)2) =  ± E ( K 2zj E ( A F ( X j , Z j , z ) K i j K zj \ X i ) 2)  

-  m 2 - E { K 2,z, i E ( A F ( X j , Z j , z ) k i j K zd \Xi)2) = 0 ( h 2r- m),4 hm

E a N (Wi, W j)2 < E A F ( X i ,  Z„ z)2K 2j K 2z iK 2z2j
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=  ^ l l ^ S A F C X , - ,  z)2k 2,l3K 2^ K 2,zj  =  0 (hr- 2™-n), 

relation (5.96) follows from Lemma 5.2.4 above. □

L em m a 5.2.8 (Order o f A \ )  Under the assumptions of Theorem 5.2.1, we have At =  

Op( 1), where At is defined by (5.72).

P R O O F : Arguing as in the proof of Lemma 5.2.10 below, one may show that At is asymp

totically normal. Hence, A t =  Op(l). □

The next result was used a number of times in the proofs of Lemmas 5.2.5-5.2.8 above. 

L em m a 5.2.9 (Auxiliary orders) Under the assumptions of Theorem 5.2.1, we have

(fcr+7 m ) ■ U M = 0 ' ( v m ) '  ( 5 -9 7 )

where AF(z) andU{z) are defined by (5.64) and (5.65), respectively, and

F(z)  =  E F {X i,  +  <*(1), P ( z )  =  P ( z )  + op(l), (5.98)

where F(z) and p(z) are defined by (5.63) and (5-40), respectively, and p(x ,z), p(x) and

p(z) are the densities o f{ X i ,Z i ) ,  X i and Zi, respectively.

P r o o f :  We consider only the case G =  1. By using Proposition 4.1.1, we have

E A F (z ) 2  = ± E A F ( X i ,  Zi, z ? K 2h{z -  Zi) +  {E A F (X it Z{, z )K h(z -  Z i ) ) 2

= \ ^ E & F { X i ,  Zi, z) 2 K 2ih(z ~  Zi) +  Zu z )K h(z -  Zi) ) 2

=°G )̂+0(/,2r)
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and

E U { z f  =  j j E U f K U z  -  Zt) =  ' E & E K ^ z  -  Zi) =  O ,

which shows the two relations in (5.97). To show the first relation in (5.98), observe first 

that

E  ( T ( z )  -  BF(Xi, 2

= E F (z ) 2 -  2 E F ( z ) E F ( X i , z +  ( E F { X i , z ) ^ ^ j \  (5.99) 

Since, by using Proposition 4.1.1,

E F (z ) 2 =  ^ E F { X i , z ) 2 K l{ z  -  Zi) +  E F (X i ,z )K h(z -  Zi) ) 2

2 2 

=  ° { w ^ )  +  ( L n x i ' z M x i ’ z )d x ‘)  +o(1) = (£F(Jfi’")w )  +o(l)
and

EF(z) = E F { X i ,z )K h{z -  Z{) =  E F ( X i , z )P +  o(l),
P(A »)

the first relation in (5.98) follows from (5.99). The second relation in (5.98) can be proved 

in a similar way. □

We now prove an asymptotic normality result (5.77) used in the proof of Theorem 5.2.1.

L em m a 5.2.10 Under the assumptions and with the notation of Theorem 5.2.1 and its 

proof, we have

^  hm+n/2 . ___ — a
V W f t z f — j j — Y ,  UiUjKijKZtiK Zj  A  Z G_LiZ). (5.100)
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P r o o f :  Setting t = G — L (z)  and denoting Ui =  ( U n , . . . ,  17,-*)', we can write the sum in 

(5.100) without the multiplicative term V(z)p(z ) 2 as

hm+nf2

N

where

tm -fn /2  JV  _  _  __
A pq(N )  =

i*j

We will first show that, for fixed p  and q,

Apq(N) 4  JV(0, a-^ r 2j ( j r 4), (5.101)

where V(z) is defined in the beginning of Section 5.2.2 and

{' ‘I 1/2 i

2 i if P =  9,
an  =

i £ p ^ q .

Then, by Lemma 5.2.12 below, (5.101) shows that the convergence (5.100) holds compo

nentwise. In order to show (5.101), we will follow the proof of Theorem 4.5 in White and 

Hong [101] (see also Lemma B.2 in Donald [28]). Since Ui can be expressed in terms of 

Wi = Zi), we can write

/v
A Pq(N )  =  ^ 2 a N (Wi, Wj)  =  ^  a N {Wu Wj),

i*j 1 < i < j < A '

where

aN {Wi, Wj)  =  hm+n/2N ~ l UiPUjqK ijK 2iiK zj
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and

aN{Wt, Wj) = a„(Wi, Wj) + a N(W j, W{).

Observe that, for i < j ,  E (a ^ (W i,  Wj)\Wi) =  0. Hence, by Proposition 3.2 in de Jong [22], 

convergence (5.101) holds if (1) Vax(Apq(N)) —» opq, and (2) G ^ i  — o(Va.r(Apq(N))2) = 

o(l) for i =  1,2,4, where with the notation aij =  Ea^{W i, Wj),

G/v,i = Eair
1 <i<j<N

Gtf,2 =  X /  ^ aijaik +  a% +  E akiakj)  ’
l<i<j<k<N

G na  =  ( E aijOikaijaik +  E aijanakjaki +  E ojkon a jka j^ .
1 <i<j<k<l<N

To show part (1), observe first that, by using the notation K^,ij — K 2̂ {X i ~  X j)  and 

K 2 ,z 4  = K 2 ,h{ z - Z i ) ,

t2m + n  N ___________________

Var(/1M(JV)) =  2o£, £  E U ^ K f j K l ^ j

=  io*,h*"+"EK§K?tiK?J  +  o (l) =  o & m l m & E k ^ K ^ K ^  + o(l).

Since, by using Proposition 4.1.1, E K 2 ti jK 2 <ZiiK 2<zj  =  f R n  p{xi, z)2 dx{ +  o(l), we obtain 

that

Vax(Apq(N)) = <t^2\\K\\Z\\K\\$ f  p(x i,z )2dxi + o (l) =  t f qV(z) 2p(z) 4
JRn

A s  for part (2), observe tha t, by using the notation K \ j j  — ~  X j ) ,  K \ <Zii

K 4 ,h.{z — Zi) and Proposition 4.1.1,

ij4m +2ra _
G „,i <  c o n s t E K f j K l i K i j
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= +  »(D =  +  0(1) =  0(1).

Similarly,
i,4m+2n   __

G,v,2 < const —  Y .  EK?j K l lK l J K?,KliK l ,

^  -i_r const /
=  j ^ E K ^ K ^ K ^ K ^ K . ^  +  o(l) =  yR„ P(*»*)3 d*i +  °(1) =  °U )

and

^4m+2n __ _ __
Gjv,4 ^  const ^  ] EK ijK ZyiK ZijK ik K ZiiK ZtieK ijK z^KZjKiicK ZtiK z k̂

i*j±i*k

u A m +2n  _ ______ _ _
=  const——  £  E K ijK ikK ljK lkK l iK ^ K l kK l l

=  const h2n EK ij K ikKijKikK 2 ^ ,iK 2 , z jK 2 ,z,kK 2 ,z,i + o (l)

=  const /i2n ( /  p(x,-, z)4dxt-^ +  o(l) =  o(l).

Arguing in a  similar way as above, one may show that, for any c,- 6 R, pt-, g,- €  { 1 , ,  £}, 

a linear combination ^2 i=l CiAPtQt(N)  is asymptotically normal with the limiting variance 

cr(p,q) 2 characterized by

Var ( y Z ^ P i u i 1*) ) -* a i P ^ ) 2-)
Since EApq(N)Aptqt(N) =  0 for different pairs (p, g) and (p', g7), we conclude that cr(p,q ) 2  

= 0 piqi +  ••• +  apdqdi which, together with the convergence (5.101), shows that (5.100) 

holds. □

The following result was used in the proof of Theorem 5.2.1 to replace the variance- 

covariance matrix E  by its estimator E.
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L em m a 5.2.11 Under the assumptions of Theorem 5.2.1, we have E =  E -f- SB with 

B  =  op( 1).

P R O O F : A s shown in the proof of Lemma 2 in Donald [28], pp. 126-127,

E =  E +  Op + +  h 2r)  .V, \ / N  N h m+n )

Then, by using the assumptions of Theorem 5.2.1 and since 5 1 =  VN hm+n/ 2, we obtain 

that E =  E +  SB  with B  =  op(l) . □

Finally, we prove that V(z),  defined by (5.45), is a  consistent estimator for V(z).

L em m a 5.2.12 Under the assumptions of Theorem 5.2.1, we have

1 N r
—  J Z p ( X i ,  Z i)K h{z -  Zi) A  /  p(xi, z f d x i  (5.102)

i^ i  jS"

and hence V{z) —tp V(z).

R e m a rk  5.2.8 The idea behind (5.102) can be expressed as follows 

1 N
— ^ R X i ,  Z i)K h(z -  Zi) «  E p(X i, Z i)K h{z -  Zi)

i=l

=  /  I  p(xi, Zi)2 K h{z -  Zi)dxidzi = I  p (x i,z ) 2 dxi.
J  Rn J  Rm J  Rn

P r o o f : By using (4.7), we can write the sum in (5.102) as

-  Z < ^ Z - ~ Z i )  =  Z.))
i= l  J=1 \  t= l  /

+  A* H  K h{X i  -  X j ) K h(z -  Z i ) K h{Zi -  Zj)  = :  I x +  J2.N 2
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We have
1 "

P(*) :=  J j  X )  Kfl(z  ~  Zi) “ *■ P(z )
i= l

in probability and hence I \ —>p 0 since N h m+n —>• oo. Arguing as in the proof of Lemma 

5.2.5, one can show that

1-2 =  EKh{Xi — X j)K h (z  — Zi)Kh(Zi — Zj) + o(l) =  f f f [  dxidzidxjdzj ■
J R" Jr™ J  Rn JRrn

- p(xi, Zi)p(xj, Zj)Kh(xi -  X j)K h{z -  Zi)Kh{zi -  zj) +  o(l) =  /  p(xi5 z)2dxi + o(l).
J Rn

This proves (5.102). □

5.3 Estimation of rank

In Sections 5.1 and 5.2, we studied local tests for (SPF) and (NP) models, namely, the 

problems to test Ho : rk{0(z)} <  L  against H i : rk{0(z)} > L  in the case of (SPF) model 

and to test Ho : adrk{i?(-, z)} <  L  against H i : adrk{F(-, z)} > L in the case of (NP) 

model, where z  and L  are fixed. In this section, we use these local tests to estimate the true 

ranks rk{0(z)} and adrk{F(-,z)} in (SPF) and (NP) models, respectively. Two methods 

available in the statistical literature can be used in order to determine the true rank, 

namely, the sequential testing procedure and the model selection criteria. We will focus 

here on the sequential testing procedure. The model selection criteria is only mentioned at 

the end of this section because it has been found to perform poorly in small samples (see 

Cragg and Donald [20]).

To describe the sequential procedure, consider for example the problem of determining 

the true rank rk{0(z)} in (SPF) model by using the minimum-x2 test of Section 5.1.2. 

(One may use any other hypothesis test for the rank of a matrix, for example, the LDU 

based test of Section 5.1.1.) Let T{L, z), L  = 1 , . . . ,  G, denote the value of the minimum- 

X2  statistic defined by (5.9). The sequential testing is based on the following procedure:
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first, for increasing integer values L  =  1 , by using the statistic T (L ,z) ,  test the 

hypothesis Ho : rk{0(z)} <  L  against the alternative Hi : rk{0(z)} >  L  a t a  given level 

of significance or, that is, determine whether

T(L , z) < x l ( (G  -  L){d -  L)), (5.103)

where Xa((G — L)(d — L)) *s the minimum f  such that P (x 2({G — L){d — L)) > £) =  a; 

second, stop at the first value of L  which does not reject the hypothesis Hq, that is, when 

(5.103) holds. Denote this value of L  by L(z). In view of Theorem 5.1.3, L{z) will not be a 

consistent estimator of rk{©(z)} because, as N  increases, L(z) will overestimate rk{0(z)} 

with probability a  > 0 (which is a  fixed significance level). The idea then, proposed by 

Potscher [81] in the context of determining the order of an autoregressive moving average 

(ARMA) model and by Bauer, Potscher and Hackl [11] in the context of model selection 

is to make a  depend on N ,  that is, a  =  a(lV), and let a(N )  -> 0 as N  oo. In this way, 

one can obtain a consistent estim ator L(z) of rk{0(z)}.

T h eo rem  5.3.1 (Consistency of rank estimator in (SPF) model) With the above nota

tion and under the assumptions o f Theorem 5.1.3, we have L(z) -+p rk{0(z)} as long as 

a(N )  -* 0 and — ln a (N )/N h m —> 0.

P R O O F : The proof is similar to th a t of Theorem 3 in Donald [28] or Theorem 5.2 in Robin

and Smith [89]. Let A c  denote the event that the null hypothesis H q  : rk{0(z)} < L
*> «<*»»

is rejected by using the minimum-^ 2 statistic T (L ,z)  a t the significance level a  =  a(N). 

Then, we have

P(L = L) = P ( A i C \ - - - n A L- i n A cL), (5.104)

where A CL denotes the complement o f A l - Let xt(N)((G — L)(d — L))  be the minimum 

f  such that P (x 2((G — L)(d — L)) >  f) =  a(N ).  By Theorem 5.8 in Potscher [81], we
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have xL(N)((G -  L )(d  - £ ) ) - »  OO if a(N ) -+ 0, and X*(/V)((G ~  L )(d ~  L ) ) /N h m -> 0 if 

— lna(iV)/iV/im —y 0. Then, for any L <  rk{0(z)} , we obtain from (5.104) th a t

P (L  = L ) <  P(A%) = 1 -  P (A L) = 1 -  P (T (L , z) > x l w « G  -  L)(d -  L )))

=  1 -  P (C (0 , L) > x l {N){{G — L)(d  — L ))/N h m) 0,

as N  —y oo, by using C (0 , L) -» <7(00,^) >  0 (see the proof of Theorem 5.1.3) and 

Xq(^)((G; — L){d — L ) ) /N h m -> 0. Observe also that, by setting Lq =  rk{0(z)},

P(L  > L q ) < P(Aco) = P{T(L 0 ,z)  > x l w ( ( G  -  L0)(d -  L0))) 0,

by Theorem 5.1.3, (**), Xa(N)((G — L o ) ( d  — L q ) )  —> oo and Theorem 2.1, ( H i ) ,  in Billingsley 

[14]. The result of the theorem now follows from the two convergence above. □

In the case of (NP) model, the sequential testing procedure is similar. Let T \(L ,z )  be 

the test statistic (5.49) used for local tests in (NP) model. Let also

L(z) =  min{L : f x(L, z) < t f a(N)(0,1)},

where Afa(N)(0,1) is the smallest f  such that P (M (0,1) >  £) =  a(N),  be the minimum 

L  which does not reject the null hypothesis H q : adrk{F(-,z)} < L at a significance 

level a(N ).  According to the next result, L(z) is a  consistent estimator of adrk{F(-, z)}, 

provided the specified conditions on the significance levels a(N)  hold.

T h eo rem  5.3.2 (Consistency of rank estimator in (NP) model) With the above notation 

and under the assumptions of Theorem 5.2.1, we have L(z) —>p adrk{F(-,z)} as long as 

a(N )  -> 0 and ( - \ n a ( N ) ) l/2 /N h m+n^  0.

P r o o f : The proof of the theorem is analogous to  that of Theorem 5.3.1 above by using 

Theorem 5.2.2 and Lemma 5.3.1 below. □
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L em m a 5.3.1 Let f ( T )  —> oo, as T  -» oo, and f(T ) —> oo be such that P(J\fa{T)(Qi 1) > 

((T )) =  a(T ). Then, S { T) / f ( T)  -> 0 i f  and only i f  ( - l n a ( r ) ) l/2/ / ( T )  0.

P R O O F : The proof is elementary. There are a, b >  0  such that

exp{—< ( T ) 2} <  P  0,1) >  f(T )) =  a (T) <  e x p { -^ (T )2}

for large enough T .  Hence, a I/,2f(T ) <  (— In a (T ))1̂ 2 <  bl/2 £{T) and

i n d i ? )  ( - ln a ( T ) ) 1/2 1/2g(T)
f ( T ) ~  / ( D  f ( T ) '

for large T, from which the result of the lemma follows. □

Finally, we briefly describe ideas behind estimation of the true rank by model selection 

criteria. Consider, for example, the case of (SPF) model and let T ( L , z) be the minimum- 

X2 statistic (5.9) used in local tests for (SPF) model. The model selection criteria is based 

on the quantity

S<£) =  ^ f ~ 9(£) ’ (5.105)

where /  and g are some functions. The function g, which is typically a strictly decreasing 

function in L , corresponds to  a  penalty factor. The behavior of the function /  differs from 

one situation to another. According to the model selection criteria, the estimator L(z)  

of rk{©(z)} is then defined as the integer L  for which the function S(L) in (5.105) takes 

its minimal value. The goal is to find conditions on the functions /  and g for which the 

estimator L(z)  is a  (strongly or weakly) consistent estim ator of rk{©(z)}. Such necessary 

conditions were found by Cragg and Donald [20] in a context similar to our. These authors 

indicated, however, that the rank estimators based on model selection criteria perform 

poorly on small sample data . We decided therefore not to  include here results on these 

rank estimators. Despite this negative fact, let us conclude by saying that some model
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selection criteria, for example, Akaike information criteria (AIC) of Akaike [6] or Bayesian 

information criteria (BIC) of Schwarz [94], are widely and successfully used in other areas 

of Statistics.
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Chapter 6

Discussion on Global Tests

In this chapter, we focus on estimation and testing of global ranks of demand systems 

given by non-parametric and semi-parametric factor models. We will not provide here 

global tests. We will instead introduce some global test statistics, explain the difficulties in 

establishing their limit laws and outline some possible approaches to solution. The chapter 

thus lays a  path  and points to directions for the future research.

6.1 Semi-parametric factor model

Consider first the problem of testing for the global rank in a semi-parametric factor (SPF) 

model discussed in Section 3.1, namely, the problem to test H q : m axzrk{©(z)} <  L, 

against the alternative H\ : max2rk{©(z)} >  L, for some fixed L. Since we are now inter

ested in the maximum of local ranks over all possible values of z, it is natural to introduce 

a  test statistic which is the maximum of some statistics used for local tests. Suppose, 

for example, that local test statistics are minimum-^2 statistics C(©(z), L)  discussed in 

Section 5.1.2. Then, consider the global test statistic

Cmax(L) =  max2 C (0(z), L)

= N h m\\K\\2 2 max2 m in ^ e } ^  vec(©(z) — ©)'(Q(z)-1 ® £ )_1vec(©(z) — ©).

Observe that, under the hypothesis H i,  there is z q  such that rk{©(zo)} >  L. Then,
-ON. I*"*.

by Theorem 5.1.3,(i), C ( Q ( z q ) , L )  —► + 0 0  in probability and hence Cmax(L) —> + 0 0  in

120
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probability as well. On the other hand, under the hypothesis Hq, we have rk{0(z)} <  L 

for all values of z. Then, in view of Theorem 5.1.3,(it)-(m ), one would expect that the 

statistic Cmax(f') has a non-degenerate limit distribution. The goal then would be to find 

this limit distribution and, by using it, to construct the corresponding global tests. This 

goal, however, turns out to be nontrivial to achieve. The difficulties lie in the following 

theorem. Its implications on global tests are further discussed after the proof.

T h e o rem  6.1.1 Let z i , ..., zn be fixed different values of z. Suppose that the assumptions 

of Theorem 4-2.2 hold for all z \ , . . .  , 2n. Then, i f  Li :=  rk{©(z,-)} <  L for i =  1 , . . .  ,n , we 

have

(c (© (zx), L ) ,. . . ,  C (0 (z„), £ ))

/ G-L G-L  \
 ̂ I zC  ^^l.CG-LiJxCd-Li))’ "  ’ ^ i^n ,(G -L n)x(d-Ln)) J  > (6 1 )

where yf^G-L^x^d-Li) =  ^3 ^i,(G-Li)x(d-Li))’ =  1» ’ ' ’ >

(G -  Li), are the eigenvalues o /3 ^ (G_L.)x(d_ £;.) in increasing order and yi^G-Li)x(d-Li)>

i =  1, - - -, n, are independent (G — L i) x  (d — L i) matrices with independent / / ( 0,1) entries.
*****

In particular, the statistics C(©(z,), Z,), * =  1 , . . .  ,n ,  are asymptotically independent.

P ro o f :  The proof is similar to that of Theorem 5.1.5. Letting Yi =  N h mC\ G—Li (^C2*)— 

Q(zi))Did-L, j i  = 1 ,.. -, n, where C ^g -l ,  and Di,d-L, are defined as in (5.23) and (5.24) for 

the matrix 0 (z ,) , we have by Lemma 5.1.3 that the test statistics C(0(z*), L), i  =  1 , . . . ,  n, 

are asymptotically equivalent to the sum of the first G — L  eigenvalues of the matrices Y{Y!. 

As in the proof of Theorem 5.1.5, we have Y{Y( —*d y fc - L  )x{d-L )• Moreover, by Theorem 

4.2.3, since matrices V iV7im(0(z,) — ©(z,-)), * =  . . . ,  n, are asymptotically independent, we 

obtain that the matrices YfYi , t =  . . . ,  n , are asymptotically independent as well. This 

concludes the proof. □
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According to Theorem 6.1.1, the minimum-x2 test statistics Eire asymptotically inde

pendent for different values of z. This asymptotic independence implies, in particular, that 

the global test statistic Cmax(L) does not have a non-degenerate limit distribution under 

the assumption sup.rk{©(z)} <  L. In fact, according to the next result, Cmax{L) —> + 0 0  

in probability.

Corollary 6.1.1 Suppose that the assumptions of Theorem 4-2.2 hold for all values of z. 

Then, under the assumption supzrk{0(z)} <  L, we have

Cmax(L) A  + 0 0 . (6.2)

P R O O F : We need to show that •P(Crmax(.£) <  c) —» 0  for all c >  0 . Since max- rk{0(z)} <  

L , we may suppose that there are different Zn, n > 1, such that rk{0(z„)} =  L q < L  for 

some value L q . Then, by using Theorem 6.1.1 above and Theorem 2.1, (i«), in Billingsley 

[14], we have that, for any n  >  1,

nS P (G nax(£) < c )  <  UmP ^ f]{ C (0 (z* :),L ) <  c}^

n / G - L  \  n

s  n p e  w i  ,(G-L0)x(d- W)<C <  (F (A 1( ^ 0 _ l4)xW-£o)) -  C0 •
fc=l \ j =1

Since n  is an arbitrary integer, it is enough to show tha t P ( A i0 ^ xn) >  c) >  0 for any 

c >  0 and m, n >  1. By using Theorem 13 in Magnus and Neudecker [73], we have

Al(3^mxn) jmn^g y m x n x n •

Then, denoting the first element of the vector i ' ^ mXn by +  • • * +  x m£m where x  

(® i,. . . , x m)' and &, i =  1 , . . . , n  are i.i.d. N ( 0 , 1) random variables, we obtain that

P(Ai(3&Xn) >  c) >  P ( min (s if t  -I h a;nf n) > c).*/®=l
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One can verify by using Lagrange multiplier and Kiihn-Tucker conditions that 

min (arifx d d- i„^n)2 =  H +  f 2 =  * 2(n),
x ' x = l

with the minimizingXi =  d 1 i  =  1 ,.. .  ,n , or a:* =  —£t (£2 d----- -Ff2)-1/2,

t" =  1 ,... ,n . Hence,

**(A iO f tx J  >  c) >  P (x 2(n) >  c) >  0. □

According to Corollary 6.1.1 and the discussion preceding Theorem 6.1.1, the maximum 

test statistic Cmax(L) —>p d-oo under both null hypothesis H q : max2rk{©(z)} < L  and 

its alternative Hi : maxzrk{0(z)} >  L. This may appear as a  major problem because 

there is no longer simple distinction between the behavior of test statistic under the two 

hypotheses. We believe, however, that there is a way out. The idea is in the spirit of 

that used in connection to global measures of density function estimates which we briefly 

discuss next.

Suppose that p(z) is a  density function and that

1 N
Pi*) = f f 5 2 K h ( z - Z i )

1 = 1

is its kernel based estimator. It is well-known (see, for example, Hardle [49] or Pagan and 

Ullah [77]) that, under suitable conditions, the estimator p(z) is asymptotically normal, 

namely,

Moreover, as it is the case with the minimum-x2 statistic C (0 (z), L), the estimators p(z)’s 

can be shown to be asymptotically independent for different values of z. Despite this fact, 

there are a number of results in the statistical literature on the asymptotic behavior of the
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maximum deviation measure of the estim ator p(z), namely, the quantity

f m„  -  (63)

(Such quantity is interesting in connection to  goodness-of-fit tests for density estimates.) In 

a fundamental work related to the global measure (6.3), Bickel and Rosenblatt [13] showed 

that, under suitable conditions, for some constants cq,C i,C 2 ,C3 ,

(c, In JV) l/f2 ( t U  -  ( c  lnJV) ‘ / 2 -  +  <* A, (6.4)

where A is a  random variable with the distribution function

P(A <  z) =  e~e ' ,  z G i  (6.5)

The result (6.4) shows in particular that, as TV —> oo, the measure Imax. concentrates

around the points (ci In TV) 1/ 2 +  (02 +C3 ln ln  JV)(ci In TV) - 1 / 2 which tend to infinity. When

centered around these points and properly normalized (interestingly the normalization 

(cilniV ) 1/ 2 —y 0 0 ), the measure Tmax converges in distribution to the limit law A shifted 

by cq.

The basic idea behind the result (6.4) is as follows. Since the estimates p(z)  are asymp

totically normal and asymptotically independent for different values of z, one may think 

of Tmax as the maximum of M  =  M ( N ) independent |A/\0,1)| random variables. It is 

well-known that a  maximum of M  i.i.d. random  variables, when properly centered and 

normalized, can have only one of the three types of limit distributions: Frechet, Weibull 

or Gumbell (see, for example, Embrechts, Kluppelberg and Mikosch [29], Resnick [87] or 

Leadbetter, Lindgren and Rootzen [57]). The distribution which appears in (6.5) is Gum

bell. Its maximum domain of attraction contains most of the light-tailed distributions like 

Normal, Gamma, Lognormal and others. For example, if Tmax is the maximum of N  i.i.d.
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-A/"(0,1) random variables, the relation (6.4) holds w ith cq =  0, c\ =  2, C2 =  —(ln47r) / 2  and 

C3 =  —1/2 (see, for example, p. 147 in Embrechts et al. [29]).

Although the above provides idea behind the result (6.4), it is by no means easy to 

establish. The approach used by Bickel and Rosenblatt [13] essentially involves two steps. 

First, the authors show that, in the limit, the difference p(z) —p(z) can be approximated by 

a Gaussian process (through so-called Komlos-Major-Tusnady [56] type approximations). 

Second, the result (6.4) is then established by considering the maximum of (the absolute 

value) of this Gaussian process which is easier to  deal with. There is by now a substantial 

amount of literature on asymptotics of maxima of Gaussian processes (see, for example, 

Leadbetter et al. [57]).

Turning back to  the maximum test statistic Cmax(L) for the semi-parametric factor 

model, we expect th a t, when properly normalized and when max2 rank{©(z)} <  L, it will 

also converge (at least be dominated by) a Gumbell distribution in the limit. The heuristics 

behind this statem ent are as follows. Let L z =  rank{0(z)} and suppose th a t one works 

under the assumption H q : maxz Lz < L. Observe then that, by Theorem 5.1.4,

Cmax{L)  =  max C(©(z), L) <  m axC(© (z),Lz).

The advantage of replacing L  by Lz in C(Q(z), L)  is that we can now approximate the 

statistic C(Q(z)1 L z ) as in the proof of Theorem 5.1.3 to obtain

Cmsuc(L) < maxz C(© (z), L z)

«  c max2 JVhmvec(©(z) -  ©(*))'VF(z)-l/2( /  -  5 (z ))W (z)-1/2vec(©(z) -  ©(z)), (6 .6 )

where S (z ) =  A (z)(A (z) 'A (z ))~ lA(z) with A(z) =  W (z)- 1/2B(z). We believe that one 

should be able to proceed now as in Bickel and Rosenblatt [13]. First, approximate 

V A/7imvec(©(z) — 0 (z )) 'W (z ) ~ 1/ 2 by a Gaussian process and then work with the max
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imum of this Gaussian process squared. Since (6 .6 ) can be thought as the maximum of

i.i.d. (.A/"(0, l ) ) 2 (more generally, x 2) random variables and since the square of a  normal 

random variable belongs to the maximum domain of attraction of a Gumbell distribution, 

we expect that the normalized (6 .6 ) would converge to  a  Gumbell distribution as well. The 

established asymptotics for the bound Cmax(L) and the fact that, Cmax(L) —>p -Foo at the 

rate N hm under the alternative hypothesis Hi  : maxz L z > L  (see the proof of Theorem 

5.1.3), we hope, will allow to distinguish between the two test hypotheses in the limit.

More precisely, suppose that a(N) max. C (& (z) ,L z) — b(N) converges to a Gumbell 

distribution A where a (N ) ,b (N ) are some positive normalization and shift constants, and, 

for a given significance level a , let AQ be such that P {A >  Aa) = a. Then, under the null 

hypothesis Ho, one would have

iI5Lp(Cmax(L) > a(AT)- 1(Aa +  b(N)))

< t im P (a (N )  maxz C7(0(z), Lz) — b(N) >  AQ̂  =  P (A > Aa ) =  a. (6.7)

On the other hand, under the alternative hypothesis H i,  by using the fact that Cmax(L) —>p 

oo at the rate N h m, we expect that

P ( d max(L) > a(A 0"l (AQ +  b(N)))  -> 1 . (6 .8 )

Based on (6.7) and (6 .8 ), one then would not reject H q at a  significance level a  as long as 

Cmax(L) <  o(iV )-1(Aa +  b(N)).

Remark 6.1.1 An alternative statistic for global tests in the semi-parametric factor 

model can be defined by integrating local statistics, namely,

Cliiat(L) = Jd(e(z),L)w(z)dz  (6.9)
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or by the empirical version of (6.9) as

C2 ,int(L) = ^ £ C ( 0 ( Z t ), L)w(Zi), (6.10)
1 = 1

where w(z) > 0 and w(z)  >  0 are some weight functions. Global measures similar to 

(6.9) and (6.10) have been extensively studied in the statistical literature (see Bickel and 

Rosenblatt [13], Lii [70], Hall [46] or others). They are typically thought to be easier to work 

with than the corresponding tests based on the maxima. The basic idea behind the test 

statistic (6.9) or (6.10) is that, under the alternative hypothesis Hi : max2rk{0(z)} >  L,  

one expects -»p -Foo, i =  1,2. Under the hypothesis H q : max. rk{0(z)} <  L, since

one is essentially s u m m i n g  (integrating) independent finite-variance random variables, one 

expects to get a  normal distribution in the limit. This can be achieved, we believe, by 

using the (6.6) type approximations.

6.2 Non-parametric model

Consider now the problem of testing for the global adjusted rank in a non-parametric (NP) 

model discussed in Section 3.2, namely, the problem to  test H q : max, adrk{i?(-, z)} <  L,  

against the alternative H i  : m ax, adrk{F(-, z)} > L.  Focus on the local test statistic 

T2 (L,z) defined in (5.51) and consider the corresponding global test statistic

T2 ,max(L) = maxT 2 (L, z). (6.11)

As in Section 6.1, we expect th a t T2 (L ,zYs  are asymptotically independent for different 

values of z and, as a consequence, that T2 (L,z)  —>p +oo under both hypotheses H q and 

H\.  Despite this fact, we believe that one can describe the asymptotics of the global test 

statistic T2 <max(L) by following the approach outlined in Section 6.1.

Recall from Section 5.2.3 tha t the statistic T2 (L, z) can be expressed in the form of the  

minimum-x 2 statistic as in (5.60). Setting L z = adrk{ir (*,z)}(= rk{ru,j2}), W(z)  =  S ®  E
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and arguing as in the proof of Theorem 5.1.3, one obtains that, under the assumption 

L < max, L : ,

^ 2 ,max(-f') 5: vaBxz T2 ^Lz, z)

~  max, V(z)2 N 2 h2m+nvec(rWtZ -  TWiZ) '(W (z)~ l -  W (z )~ lB{z) ■

■ ( B ( z ) 'w ( z ) - l B ( z ) ) - lB ( z y w ( z ) - l )vec ( r w,z -  r w,z ). (6 .1 2 )

One should be able to approximate now Nh.m+n/2 vec(rw<z — r^ ,,)  by a Gaussian process, 

substitute it in the relation (6.12) and then work with the maximum of the square like 

transformation of this Gaussian process. At the end, we expect to obtain a Gumbell 

distribution as in the case of (SPF) model discussed in Section 6.1.

R em ark  6.2.1 The discussion above is based on the local test statistics T2 (L, z). How 

to deal with, say, the maximum o f the alternative local test statistics T\ (L, z) in (5.49) is 

still an open question. Note also tha t, as in (6.9) and (6.10), one may define a global test 

statistic for (NP) model as an integral or a sum of the local test statistics T2 (L,z).
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Chapter 7

Applications and Simulation 
Results

In this chapter, we apply (SPF) and (NP) models to estimate the local rank of a demand 

system from economic data. In Section 7.1, we describe the data set that we use. Applica

tions of the two models for rank estimation can be found in Sections 7.2 and 7.3. Finally, 

in Section 7.4, we perform some Monte Carlo simulations to support the observations made 

in applications.

7.1 Description of the data set

The data set that we will use contains information on expenditures, to tal income and prices 

faced by a number of households across the United States. Expenditures and total income 

are taken from Interview Survey Public-Use Tapes of the Consumer Expenditure Surveys 

data for the United States (the CEX data, in short). The CEX da ta  set and the selection 

procedure are described in greater detail below. The CEX data, however, contains no 

information on prices faced by different households. Prices are drawn from the American 

Chamber of Commerce Research Association price data for various cities across the United 

States (the ACCRA data, in short). We are able to associate these prices to households 

by using some location variables reported in the CEX data set as matching variables. The 

ACCRA data  and the matching procedure are also described in greater detail below. Our 

matching procedure is a more refined version of that found in Nicol [76] because we use
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confidential information to attain a better m atch of the CEX and ACCRA data  sets.

The CEX d a ta  set is the major source of information on household expenditures and 

types reported by the Bureau of Labor Statistics in the United States every quarter since 

1980. In our study, we use the CEX d ata  set of the first quarter of 2000 available at 

Inter-university Consortium for Political and Social Research [4]. We work with the family 

(FMLY) data file which is one of the four d a ta  files in the CEX data set. The FMLY file of 

the first quarter of 2000 contains records on 7860 households (also called consumer units) 

across the United States. A record corresponding to one of these households consists of a 

large number o f variables or characteristics of a  household, for example, different kinds of 

income, expenditures on various kinds of goods, region of residence, size o f the household, 

number of vehicles owned and many many others. Each variable has a name, for example, 

the variable FOODCQ denotes expenditures on food during the current quarter, and a 

preassigned position in the FMLY file. The full list and description of these variables can 

be found in the codebook accompanying the CEX data  set for 1999-2000 [4].

In order to  have a somewhat homogeneous sample, we select from the FMLY file only 

those households which contain married couples, whose tenure status is renter household, 

homeowner w ith mortgages or without mortgages, whose age of the head is between 18 

and 65, and which have no self-employed members. A selection similar to  ours was also 

used by Nicol [76], Donald [28], Lewbel [63] and others. The total number of households 

which met these criteria were 1771 (out of 7860).

With each of the selected households, we retain the variables of interest to our study, 

namely, total income of a household, expenditures on various goods and some location 

variables. By the total income we mean wages and salaries before deductions received by all 

household members in the past 12 months, denoted by the variable SALARYX in the FMLY 

data file. (There are also other total income variables that one can use, for example, income 

after taxes.) We group expenditure variables into six categories of goods: food (FOODCQ 

variable in the FMLY data file), health care (HEALTHCARE variable), transportation
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(TRANSCQ variable), household (HOUSECQ), apparel (APPARCQ variable to which we 

also added the personal care variable PERSCACQ) and miscellaneous goods (essentially 

the sum of variables corresponding to expenditures on entertainment, books, alcohol and 

others). This grouping is motivated by the following two considerations. First, the majority 

of the above groups of goods are already defined as categories of goods for the expenditures 

in the FMLY data file. Second, since one would like to match expenditures for various goods 

to their prices, we have to take into account the groups of goods considered in the ACCRA 

data. We will see th a t the categories of goods defined above are essentially those that 

appear in the ACCRA data. (This latter point is not so much relevant to the applications 

presented in this thesis because we end up using the average prices of the ACCRA data; see 

below. It is nevertheless important whenever a more general study of ranks is undertaken.)

The location variables associated with a household are the population size variable 

of a principal statistical unit (PSU, in short; see below for an explanation) denoted by 

POPSIZE in the FMLY file, the dummy variable SMSASTAT indicating whether a  selected 

household belongs to a  metropolitan statistical area (MSA, in short; see below) and the 

STATE variable indicating the state where the household belongs to. These variables will 

be used as matching variables below to associate prices from the ACCRA da ta  to different 

households. The notions of MSA and PSU used earlier are easy to explain. MSA’s are 

just metropolitan areas of the Unites States, for example, Atlanta (GA), Nashville (TN) 

and so on. They are defined by the Office of Management and Budget at the W hite House 

[3] and each of them is assigned a number. Unlike MSA’s which are just used in CEX 

data sets, PSU’s are directly linked to them. PSU’s are groups of one, two or more MSA’s 

whose households were selected for a  CEX survey. They are created and used by CEX for 

confidentiality reasons.

The ACCRA data  is the premier source of information on living cost differentials among 

U.S. urban areas. It is published quarterly since 1968, covers a varying number of urban 

areas (for example, 302 urban areas in the first quarter of 2001 and 317 urban areas in
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the first quarter of 2000) and contains price indices for six categories of goods of the 

corresponding urban areas: food (grocery items), housing, utilities, transportation, health 

care and others (miscellaneous goods and services). I t also contains a composite index 

which is computed as a weighted average of the six categories of goods. For a  detailed 

description of these categories of goods, corresponding indices and a composite index, 

see the ACCRA Cost of Living Index Manual [2]. Since we want to match price da ta  to 

expenditures, we use the ACCRA price data for the first quarter of 2000 which we acquired 

directly from ACCRA [5]. To give an idea of the prices (price indices), we provide in Table 

7.1 below a sample of prices for eight urban areas across the United States. Observe that 

prices and even composite prices axe quite different for various urban areas. (For example, 

the price index 112.6 in Food category for Boston (MA) means that the food prices in 

Boston are 12.6 percent higher than the average of food prices for all areas participating 

in the ACCRA survey, while 88.4 in Housing category for Houston (TX) means tha t the 

housing prices in Houston are on average 11.6 percent lower than elsewhere.)

Area Composite Food Housing Utilities Transp. Health Others
Boston (MA) 136.3 112.6 188.3 130.3 117.5 126.6 112.2

Cincinnati (OH) 98.3 95.8 93.5 110.8 97.3 94.1 101.4
Detroit (MI) 110.5 108.0 130.3 106.4 104.6 113.2 97.2

Houston (TX) 95.7 93.5 88.4 98.4 107.4 110.1 96.5
Jacksonville (NC) 97.5 100.6 89.7 102.9 88.6 97.7 104.1

Knoxville (TN) 94.5 95.5 87.8 96.6 91.5 91.7 100.4
Minneapolis (MN) 107.5 102.7 108.2 101.5 114.2 132.0 105.1
Pittsburgh (PA) 109.8 100.7 109.4 139.6 104.8 103.0 107.8

Table 7.1: ACCRA data  of First Quarter 2000 for eight selected urban areas

Having obtained the ACCRA data, we then need to match it to households selected 

from the CEX data set. The matching procedure is carried out by using location variables 

POPSIZE, SMSASTAT and STATE in the FMLY data file of CEX (see above) as follows. 

On our request, the Bureau of Labor Statistics provided a confidential list of all (numbers
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of) PSU’s and corresponding MSA’s th a t were used in the CEX survey of the first quarter of 

2000. Then, by using the list of metropolitan areas [3], we first identify each MSA number 

in the confidential list with the MSA area name and the state. By using population sizes 

of metropolitan areas published by the U.S. Census Bureau [1], we next also assign to each 

identified MSA its population size. Then, to each such MSA we can assign prices of goods 

from the ACCRA data. The majority of MSA’s have their prices reported in the ACCRA 

data. In cases when MSA price data  is not available, we use the average prices of areas 

in the neighborhood counties as proxies. Next, with each MSA used, we also associate the 

value of its POPSIZE variable. To do so, we first list all PSU’s and their MSA’s, and then 

compute their population sizes by summing up the sizes of the corresponding MSA’s. The 

POPSIZE variable assigned to an MSA is a  dummy variable of the population size of the 

PSU that the MSA belongs to. I t equals 1 if the PSU size is more than 4 million, it equals 2 

if the size is between 1.2 and 4 million, and so on. After performing these steps, we obtain 

entries with the following information: PSU number, MSA number, MSA name, vector of 

prices, STATE variable indicating the state where MSA belongs to and POPSIZE variable 

indicating the PSU size.

Finally, we want to match the prices in these created entries to households selected from 

the CEX data. To do so, we use the triplet of STATE, POPSIZE and SMSASTAT variables 

in the CEX data set as matching variables. If the variable SMSASTAT indicates that a  

household does not belong to an MSA, we drop it from our analysis. (There were 236 such 

households out of 1771 selected.) If a household belongs to an MSA, we match its STATE 

and POPSIZE variables to those already associated with the price data. For the majority 

of STATE and POPSIZE variable values, there is only one corresponding entry with price 

information. These prices are then taken as a  price data associated with a  household (see 

also a  further discussion below). In  cases when there are a few corresponding entries with 

the same STATE and POPSIZE values (this can happen, for example, when one PSU has 

more than one MSA or when there are a number of cities of comparable size in the same
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state), we take the average of these prices as a  price data associated with a household.

We thus match the ACCRA price data to households selected from the CEX data file. 

In addition, we drop from our analysis those households who refused to report their total 

income, whose income was lower than $2,000 or higher than  $150,000, and whose total 

expenditures were reported zero. After these and the eliminations discussed earlier, we are 

left w ith 755 households. We will work hereafter with expenditures, income and price data 

for these 755 households.

We still need to make clear exactly what price vectors we associate with households. 

According to Economic Theory, we have to take a  vector of prices of the categories of 

goods used in a demand system. We can, in principle, do this for our data set by taking 

the prices of food, health care and  transportation for the corresponding categories of goods 

in the FMLY file, the average of the housing and the utilities prices for the household 

category and, for example, by taking the prices of other goods as proxies for apparel and 

miscellaneous goods. We think, however, that the constructed data  set would not be 

feasible for our purposes. Recall that estimation of local rank involves localization at a 

fixed price variable z. If z  is, say, 6-dimensional (as it would be in our case) and if there are 

755 observations, then there would be very few observations around a  fixed value of z  at 

our disposal. To understand w hat we mean, suppose for instance tha t there are N  — 1000 

observations (of prices) uniformly distributed in a 6-dimensional box [0, l]6 and that the 

bandwidth h which is used in localization, is equal to 0.2. Then, the average number of 

observations in a 6-dimensional box of the size h6  =  (0.2)6 is N (h 6) =  1000(0.2)6 =  0.064. 

There is no way one can make a  sound inference from 0.064 observations. If the box were 

7-dimensional or 8-dimensional, then the average numbers would be even smaller, 0.0128 

and 0.00256, respectively. In contrast, if the box were 1-dimensional or 2-dimensional, 

the corresponding average number of observations would be 200 and 40, respectively. One 

can see that the problem is a  large dimension of a vector z. Then, either one needs more 

observations or one has to use a  z  of a lower dimension as a  proxy. (Similar observations,
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regarding what is known as the empty-space phenomenon, are also made in the context of 

kernel based estimation of multi-dimensional densities. See, for example, Silverman [97], 

pp. 92-93.)

We shall follow here the second approach (but see also remarks below). More precisely, 

we will take z  to be the ACCRA composite price index which is one-dimensional. If one 

agrees to take a z  of a lower dimension, then this assumption has a  few advantages. First, 

it is the simplest one in the sense that one does not have to worry what dimension to take, 

which prices to eliminate or average and so on. Second, by its definition, a composite price 

index is supposed to capture best the overall price state of an urban area, and hence is quite 

natural to use. Third, it is also most convenient to work with since there are now more 

observations around a fixed value of a price z (as compared to  two or higher dimensions). 

And, fourth, one may also expect that this simplest case becomes a  guide to more general 

situations of multi-dimensional z 's.

R e m a rk  7.1.1 One way to increase the number of observations N  (and hence to curtail 

the problem of dimensionality) is to use the CEX and ACCRA data  for multiple quarters. 

One then needs, however, to make adjustments in the data to  take into account inflation. 

This can be done, for example, by using CPI (Consumer Price Indexes) data. See Nicol 

[76] for more details.

R e m a rk  7.1.2 One may ask the question whether by considering z ’s of a lower dimension, 

we indeed avoid problems of estimation of the local rank discussed earlier. It may seem 

that averaging of the coordinates of z  to obtain a one-dimensional proxy (as we did for the 

ACCRA data) is equivalent to taking a large h when localizing a t a  multi-dimensional z. 

The advantage of the former approach, we feel, is that the one-dimensional z has a clear 

meaning and that, by being able to choose a small h then, we indeed achieve a localization. 

On the other hand, the latter approach based on keeping a multi-dimensional z and taking 

a large h, we feel, is likely to become a black box for moderate sample sizes with hard to 

interpret results.
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We conclude this section with a few illustrative plots of shares of some goods against 

the logarithm of total income in the constructed data set. (In applications, one typically 

uses the logarithm of total income instead of the total income itself.) The share of a group 

of goods, say a share of food, is defined as the ratio of expenditures for th a t group of goods 

and the total expenditures. Figure 7-1 above shows the share of health care against the 

logarithm of to tal income while Figure 7-2 shows that of miscellaneous goods against the 

logarithm of to tal income. Observe that the two plots have quite different shapes. (If one 

ignores the price variable z, then the rank of the constructed data set of a  demand system 

is the smallest number of functions whose linear combinations fit well the d a ta  in the plots 

of Figures 7-1, 7-2 and also the other figures that one would get by considering the rest of 

the shares. Since the two plots in Figures 7-1 and 7-2 have quite different shapes, one is 

inclined to deduce now that the rank is probably a t least 2.)

7.2 Application of semi-parametric factor model

In this section, we model the economic d a ta  described above through the semi-parametric 

factor demand system YJ =  6(Z{)V(Xi)  4- ej, i =  1 Here, N  = 755 is the number

of households in our data set, Yi is a  vector of shares of six categories of goods, Z, is the 

corresponding composite price index and X i  is the total income of a household. Recall 

that the categories of goods in Yi are food, household, health care, transportation, apparel 

and miscellaneous goods. For notational convenience, we consider hereafter price indices 

Zi divided by 100. So, for example, the fixed price regime z  =  1.2 corresponds to prices 20 

percent higher than the average and z  =  0.9 corresponds to prices 10 percent lower that 

the average (see Section 7.1). Finally, the vector V(x)  above has the size 4 x 1  and is given 

by

V(x)' =  (1 c- l logx (c_1 logx)2 (c_1 logx)3)

where c =  log(150000) is the normalization constant, and the 5 x 4  matrix 9{z) is unknown. 

Normalization constants are sometimes used in modeling of demand systems and  their rank
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estimation (see, for example, Cragg and Donald [18]) to make variables in the model of 

a  comparable size. Recall that 150000 in the constant c is the maxim um  of total income 

considered. Hence, c-1 log(X,-) €  (0 ,1 ) and obviously Yi € (0 ,1 ) as well. Observe also that 

this semi-parametric factor demand system nests the popular PIGLOG and QAID demand 

systems (see (2.18) and (2.19)). Our goal is to determine its rank.

As explained in Section 3.3.1, the rank can be estimated as the maxim um  of the ranks 

of all possible reduced demand systems, namely, demand systems where one share of goods 

is dropped from the analysis. Moreover, the rank of a reduced system is the rank of the 

corresponding reduced matrix 0(z) and it can be estimated by using rank tests described 

in Section 5.1. Since these tests involve the kernel based estimator of 0 (z ), we first need to 

choose a  bandwidth h to estimate 0 (z) and also decide on what fixed values of price regimes 

z to consider. We will work with the Epanechnikov kernel (see Section 4.1) throughout.

We will look at a  few price regime values, namely, z =  1, z =  1.2 and z =  0.9. As for 

the bandwidth h, the statistical literature offers a  number of ways to select it in various 

contexts. One can use, for example, a cross-validation (see, e.g. Hardle [49] for basic 

ideas on cross-validation in the context of a  non-parametric regression), the Arth nearest 

neighbor method (see, e.g. Pagan and Ullah [77] and Hardle [49]) or employ some rule- 

of-thumb formula like h =  a N ~ 1/5 where N  is the sample size and tx >  0 is the sample 

standard deviation of Z{ s. Cross-validation in our context chooses h which minimizes the 

sum
1 N- £ | y ; - - © t-(zt)K(xt-)|2,

i=l

where ©,(z) is defined in the same way as 0 (z) but by omitting the zth terms in the sums of 

its definition (the so-called “leave-one-out” estimator). For example, for a  demand system 

with the food share eliminated, the cross-validation selected h = 0.3. The same value 

of h was also selected for other reduced demand systems except for the demand system 

without the miscellaneous goods in which case h was selected as 0.5. The cross-validation 

procedure is global in the sense that h  is selected as optimal for a  range of z’s. The
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Arth nearest neighbor method, on the other hand, chooses fc for each value of z separately 

(locally), namely, as two times the distance of z  to its fcth nearest neighbor (observation). 

The idea is that, when there are fewer observations around the variable z, then the selected 

fc is larger. In practice, one typically takes fc ss y/N  (see Pagan and Ullah [77]).

Which of these or other available methods are then appropriate to our situation? Since 

we are interested now in local tests at a few fixed values of z, then probably a cross- 

validation method is not that suitable because it is global in nature. For this reason, we 

will focus here on local selection methods. More precisely, we will look at a wide range of 

the values of fc for the considered fixed price regimes z. We will include h in the range based 

on the number of observations Zi in the neighborhood of the size fc at a  fixed price regime 

z. For example, when z =  1, there are 40, 88, 199, 282, 362, 541 and 678 observations Zi in 

the fc =  0.01, 0.015, 0.02, 0.04, 0.05, 0.08 and 0.2 neighborhoods of z  =  1, respectively. We 

will consider fc =  0.015, 0.02, 0.05 and 0.08 for z =  1. For z =  1.2, we will take h =  0.05,

0.07, 0.15 and 0.2 (with 65, 135, 282 and 513 observations, respectively) and, for z =  0.9, 

we will consider fc =  0.04, 0.08, 0.11 and 0.17 (with 90, 175, 273 and 538 observations). 

Observe that the four values of fc taken for each of the three fixed price regimes have a  

comparable number of corresponding observations. Note also that if, for example, fc is 

chosen by the fcth nearest neighbor method with fc «  \ / N  =  y/755 «  27.47, then this fc is 

comparable with the smallest value of fc chosen above since it is twice the distance to its 

27th nearest neighbor (or approximately the distance to its 27(2) =  54th neighbor). Other 

values of fc can be considered in the same way. Finally, for the sake of completeness and 

comparison, in addition to the values of fc chosen above, we will also report the results for 

fc’s selected by cross-validations.

R e m a rk  7.2.1 Although we decided not to focus on global selection methods for the 

bandwidth fc, there is one situation in local tests where such selection might be appropriate 

or just necessary. Observe that the variance-covariance matrix estimate E in (4.22) used 

in either of the local tests described in Section 5.1, is defined by using the available range
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of Zi s. Thus, one no longer focuses on a fixed value of z  and, for this reason, we will 

compute E by taking h selected by cross-validation.

Rank of reduced demand
EUm. share Method 1 2 3

Food
min-x2
LDU
ALS

0.0000
0.0000
0.0000

0.7198
0.9999
0.0000

0.8435
0.9999
0.8423

House
min-x2
LDU
ALS

0.0000
0.0000
0.0000

0.0508
0.4999
0.0000

0.5950
0.9999
0.5830

Health
min-x2
LDU
ALS

0.0000
0.0000
0.0000

0.0226
0.9999
0.0006

0.8800
0.9999
0.8073

Transport
min-x2
LDU
ALS

0.0000
0.0000
0.0000

0.0480
0.7159
0.0000

0.3557
0.9997
0.1898

Apparel
min-x2
LDU
ALS

0.0000
0.0000
0.0000

0.0065
0.0000
0.0000

0.3630
0.9999
0.3017

Miscell.
min-x2
LDU
ALS

0.0003
0.0000
0.0000

0.5508
0.9998
0.3803

0.3549
0.9999
0.1997

Table 7.2: P-values for hypothesis tests in a  semi-parametric factor model ignoring z

Before we present the rank estimation results for the values of h and z chosen above, 

let us first examine what happens when the variable z  is ignored altogether. As we will 

see below, results obtained ignoring z  turn out to be interesting to compare with those 

when z  is taken into account and also informative on w hat might be expected then. We 

hence suppose for a moment th a t the model is Yi =  OV(Xi )  -f e,, estimate © in each 

of the reduced demand systems by using regression and deduce the rank of © by using 

some rank estimation method described in Section 5.1. T he rank of 9 is then taken as the 

maximum of the ranks of the corresponding reduced systems. The results are presented in 

Table 7.2 where the first c o lu m n  indicates the share dropped from the analysis, the second 

one shows which rank estimation method is used (the minimum-x2 test of Section 5.1.2,
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the asymptotic least squares of Section 5.1.4 or that based on the LDU decomposition of 

Section 5.1.1) and the rest of the columns contain the p-values for the hypothesis tests 

rk{©} <  L with L = 1,2 and 3, respectively. The rank 4 or higher is not reported since 

4 is the highest possible rank for the matrix 0 . The p-values are computed by using the 

asymptotic results for test statistics described in Section 5.1. If a  p-value is small, say 

less than 0.05 corresponding to  a 5 percent significance level, then the corresponding null 

hypothesis test is rejected at th a t significance level. So, for example, according to Table

7.2, all three test statistics reject the rank 1 hypothesis a t negligible significance levels.

Observe from Table 7.2 th a t the rank of the demand system with the apparel share 

eliminated is estimated as 3 by using any of the three estimation methods and by consider

ing a  significance level as low as 1 percent. Since none of the other reduced demand systems 

have their estimated rank higher than 3, we can conclude th a t the estimated rank of the 

full m atrix 9 and hence the rank of the demand system y  = 0 V (a:) is 3. Observe also that 

rank estimation results for reduced, demand systems are quite different, depending on the 

estimation method used. For example, at a  significance level of 5 percent, the rank of the 

demand system without the food share is estimated as 2 by the LDU and the minimum-x2 

tests, and as 3 by using the ALS test. The reader who is u n f a m i l i a r  with rank estimation in 

practice, may be somewhat perplexed a t the disparity of these results. They are, however, 

typical. It is known that even though the minimum-x2, the ALS and the LDU tests follow 

the same chi-square distribution in the limit, they have quite different properties for small 

or moderate sample sizes. We will come back to some of these points later.

Rank estimation results for the values of h and z  chosen earlier are presented in Tables 

7.4, 7.5 and 7.6 dealing with z  =  1, z  =  1.2 and z  =  0.9, respectively. The first column 

of these tables indicates the share dropped from the analysis, the second column lists the 

values of h considered (the values of h between two horizontal lines correspond to those 

chosen by cross-validation) and the rest of the columns consist of the p-values for the 

hypothesis tests rk{0(z)} <  L  with L = 1,2 and 3, based on the minimum-x2 (denoted
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simply by x 2)> the LDU and the ALS methods. Based on the results reported in these 

tables, we make the following observations. They are further discussed below.

1. Dependence of rank tests on choices o f  h. Observe that the p-values increase in most 

cases when the minimum-x2 test is applied with smaller values of h. One is thus 

inclined not to reject a lower rank when applying the minimum-x2 test with smaller 

h. This behavior seems to be characteristic to the LDU test as well (see, in particular, 

the LDU test results for rank 2 in Table 7.4 with the transportation or the apparel 

share eliminated) but it is less pronounced and more difficult to judge as most of the 

p-values are either close to  0 or to 1. The same conclusion cannot be drawn for the 

ALS test where the p-values do not seem to obey any particular rule with respect 

to changes in h. Observe, however, th a t in a  number of cases, the p-values even 

decrease as h  becomes smaller (see, for example, the results for rank 3 in Table 7.4 

with the house share eliminated or in Table 7.6 with the miscellaneous goods share 

eliminated).

2. Comparison to tests where z is ignored. Observe that the p-values for the minimnm- 

X2 test in Tables 7.4-7.6 are higher or comparable to the corresponding p-values in 

Table 7.2 where z  is ignored altogether. Thus, when using the minimum-x2 test, 

one tends not to reject a  local rank which is lower than that obtained when z is 

ignored. Moreover, observe that, as h  becomes larger and in particular when h is 

chosen by cross-validation, the p-values for the minimum-x2 test come close to the 

corresponding ones in Table 7.2. For small h, however, the p-values are considerably 

larger and  hence lead to the conclusions different from those resulting from Table

7.2. The same observation seems to hold for the LDU test in Table 7.4 (see, in 

particular, the results for rank 2 when the house or the apparel share is eliminated) 

and less so in Tables 7.5 and 7.6. As for the ALS test, it is difficult to draw any 

tangible conclusions. It seems, however, that for many reduced demand systems, in 

fact the opposite is true, namely, the p-values are comparable or smaller than the
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corresponding ones in Table 7.2. One is inclined then not to reject a local rank which 

is the same or higher than that obtained ignoring z  altogether.

3. Comparison of different methods. Observe that, when testing for rank 1, the p-values 

for the minimum-x2 test are higher than the corresponding ones for the ALS and the 

LDU tests. W hen testing for ranks 2 and 3, however, the situation changes. The 

p-values are now the smallest for the ALS test and the highest for the LDU test, 

while those for the minimum-x2 test are intermediate.

4. Estimates of local ranks in the full and reduced demand systems. In Table 7.3 below, 

we summarize the local rank estimates in the reduced demand systems which are 

obtained from the results of Tables 7.4-7.6 at a  5 percent significance level. In  many 

cases, we put more than one entry because the estimates are different for different 

values of h. Moreover, the estimates in the parenthesis correspond to the values of h 

chosen by cross-validation. By taking the maximum of the ranks obtained in Table

7.3, we can conclude that the local ranks a t z  — 1, 1.2 and 0.9 are 2, independently 

of the values of h  considered (but excluding the value of h chosen by cross-validation) 

and when either the minimum-x2 or the LDU test is used. Thus, in this case, the 

estimated local rank is smaller than rank 3 obtained from the results in Table 7.2 

where z  is ignored. If one uses h selected by cross-validation, then the estimated local 

rank is typically higher, namely, it is 3 at all three z ’s by using the minimum-x2 test, 

and it is 2 at z  =  1.2, and 3 at z = 1 and 0.9 by using the LDU test. If one uses 

the ALS test, then the estimated local ranks of a  full system is 4 in most cases. It is 

thus higher than the rank obtained when z  is ignored.

Finally, let us observe that, although the estimated local ranks of a  full demand 

system are the same for three different price values of z  and when the same m ethod 

is used, the estim ated local ranks for reduced systems are different in some situations. 

See, for example, the estimation of rank by using the minimum-x2 test the system
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with the miscellaneous goods share eliminated for small values of h. In this case, the 

local rank is 1 at z =  1 and 1.2, and it is 2 at z  =  0.9.

Estimated local rank at a  =  5% significance level
Elim. share Test z  =  1 z =  1.2 z = 0 .9

Food
m in-x2
LDU
ALS

1 or 2 (2) 
2(2)

2, 3 or 4 (3)

1 or 2 (2) 
2 (2 )

3 or 4 (3)

1 or 2 (2)
2 (2)

2, 3 or 4 (3)

House
m in-x2
LDU
ALS

1 or 2 (3) 
2(2)

2 or 3 (4)

1 or 2 (3) 
2 (2) 
4 (4)

2 (2)
2 or 3 (3) 

2, 3 or 4 (4)

Health
m in-x2
LDU
ALS

1 or 2 (3) 
2(2)

2 or 3 (3)

2 or 3 (3) 
2 (2) 
4 (3 )

2 (2 )
2 or 3 (2) 

4 (3)

Transp.
m in-x2
LDU
ALS

1 or 2 (3) 
2(2)

3 or 4 (3)

2(2)
2(2)
4 (3 )

2 (2)
2 (2)

2,3 or 4 (4)

Apparel
m in-x2
LDU
ALS

1 or 2 (3) 
2(3)

3 or 4 (4)

1 or 2 (3) 
2 (2) 
3 (4)

2 (3)
2 or 3 (2)
3 or 4 (4)

Miscell.
m in-x2
LDU
ALS

1(2)
2(2)
1(2)

1(1)
1 or 2 (2) 

1 (2)

1 or 2 (2) 
2 (2 )

2, 3 or 4 (1)

Table 7.3: Estimated local ranks in a  semi-parametric factor model at z  — 1, 1.2 and 0.9

These observations summarize what we expect to find in other applications as well. 

Some of these observations are also supported by the results of Monte-Carlo simulations 

presented in Section 7.4. Our m ain finding is that, when using smaller values of h and 

either the minimum-x2 or fche LDU test, the estimated local rank is smaller than the rank 

obtained when z  is ignored. If  larger h is considered, for example h  selected by cross- 

validation, then the estimated local rank is essentially the same as that obtained ignoring 

z. Since we argued earlier in the section that the cross-validation and hence larger h may 

not be appropriate to our context, we suggest working w ith smaller h  and therefore not 

rejecting lower local ranks. O ur findings should not be surprising. To understand why
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Figure 7-3: Share of food versus prices and logarithm of to tal income

not, imagine 3-dimensional plots of shares, prices and total income on the three axis as, 

for example, in Figure 7-3. If z  is fixed, then the local r a n k  at z  (small h) is essentially the 

smallest number of functions needed to fit the shape of these graphs around a cross section 

at that fixed value of z. If z  is now ignored, that is all of the cross sections are combined 

into a single two-dimensional plot, then there is clearly a greater variety of shapes in the 

newly obtained plot and hence the rank is higher. The results based on the ALS test 

are somewhat counterintuitive in the above sense because they point to local ranks higher 

than the rank obtained ignoring z. This may be explained by the fact that the ALS test is 

known to overestimate the r a n k  (see, for example, Robin and Smith [89] and also Section 

7.4 below).
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Rank of reduced demand at z =  1
Elimin. 1 2 3
share h X2 LDU ALS x2 LDU ALS x 2 LDU ALS

0.015 0.502 1 0.000 0.000 0.948 0.999 0.248 0.916 0.999 0.337
Food 0.02 0.155 0.000 0.000 0.763 0.999 0.000 0.909 0.999 0.011

0.05 0.004 0.000 0.000 0.318 0.991 0.000 0.837 0.999 0.648
0.08 0.001 0.000 0.000 0.498 0.998 0.000 0.912 0.999 0.865
0.3 0.000 0.000 0.000 0.538 0.999 0.000 0.627 0.999 0.402

0.015 0.149 0.000 0.000 0.957 0.997 0.142 0.880 0.999 0.012
House 0.02 0.062 0.000 0.000 0.709 0.999 0.000 0.910 0.999 0.150

0.05 0.000 0.000 0.000 0.258 0.905 0.000 0.609 0.999 0.793
0.08 0.000 0.000 0.000 0.340 0.542 0.000 0.521 0.999 0.624
0.3 0.000 0.000 0.000 0.023 0.991 0.000 0.417 0.999 0.000

0.015 0.124 0.000 0.000 0.813 0.939 0.000 0.889 0.999 0.292
Health 0.02 0.051 0.000 0.000 0.955 0.999 0.253 0.945 0.999 0.094

0.05 0.000 0.000 0.000 0.810 0.999 0.425 0.773 0.999 0.513
0.08 0.000 0.000 0.000 0.637 0.999 0.365 0.761 0.999 0.507
0.3 0.000 0.000 0.000 0.017 0.999 0.000 0.845 0.999 0.673

0.015 0.060 0.000 0.000 0.705 0.893 0.000 0.931 0.999 0.823
Transport 0.02 0.020 0.000 0.000 0.699 0.998 0.000 0.936 0.999 0.455

0.05 0.000 0.000 0.000 0.222 0.576 0.000 0.496 0.999 0.006
0.08 0.000 0.000 0.000 0.232 0.462 0.000 0.265 0.999 0.453
0.3 0.000 0.000 0.000 0.029 0.597 0.000 0.266 0.999 0.741

0.015 0.073 0.000 0.000 0.711 0.878 0.000 0.928 0.999 0.000
Apparel 0.02 0.029 0.000 0.000 0.805 0.973 0.000 0.980 0.999 0.584

0.05 0.000 0.000 0.000 0.246 0.908 0.000 0.465 0.999 0.000
0.08 0.000 0.000 0.000 0.196 0.628 0.000 0.177 0.999 0.000
0.3 0.000 0.000 0.000 0.003 0.002 0.000 0.244 0.999 0.000

0.015 0.542 0.006 0.350 0.853 0.999 0.313 0.930 0.999 0.863
Misceli. 0.02 0.784 0.006 0.751 0.988 0.999 0.985 0.914 0.999 0.894

0.05 0.222 0.000 0.226 0.728 0.999 0.652 0.797 0.999 0.787
0.08 0.089 0.000 0.075 0.480 0.999 0.198 0.571 0.999 0.526
0.5 0.000 0.000 0.000 0.418 0.999 0.110 0.273 0.999 0.147

Table 7.4: P-values for hypothesis tests in a semi-parametric factor model at z  =  1
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Rank of reduced demand a t z  -= 1.2
Elimin. 1 2 3
share h X* LDU ALS x 2 LDU ALS X* LDU ALS

0.05 0.308 0.000 0.000 0.683 0.999 0.023 0.579 0.999 0.265
Food 0.09 0.086 0.000 0.000 0.519 0.999 0.000 0.326 0.999 0.409

0.15 0.001 0.000 0.000 0.597 0.999 0.000 0.372 0.999 0.011
0.2 0.001 0.000 0.000 0.827 0.988 0.000 0.654 0.999 0.377
0.3 0.000 0.000 0.000 0.713 0.999 0.000 0.719 0.999 0.528

0.05 0.085 0.000 0.000 0.372 0.999 0.000 0.347 0.999 0.000
House 0.09 0.030 0.000 0.000 0.258 0.999 0.000 0.251 0.999 0.000

0.15 0.000 0.000 0.000 0.142 0.715 0.000 0.343 0.999 0.000
0.2 0.000 0.000 0.000 0.102 0.994 0.000 0.505 0.999 0.000
0.3 0.000 0.000 0.000 0.043 0.992 0.000 0.487 0.999 0.000

0.05 0.000 0.000 0.000 0.043 0.999 0.000 0.487 0.999 0.000
Health 0.09 0.030 0.000 0.000 0.258 0.999 0.000 0.251 0.999 0.000

0.15 0.000 0.000 0.000 0.142 0.319 0.000 0.343 0.999 0.000
0.2 0.000 0.000 0.000 0.102 0.999 0.000 0.505 0.999 0.000
0.3 0.000 0.000 0.000 0.043 0.999 0.002 0.487 0.999 0.430
0.05 0.036 0.000 0.000 0.216 0.999 0.000 0.287 0.999 0.000

Transport 0.09 0.008 0.000 0.000 0.125 0.999 0.000 0.273 0.999 0.000
0.15 0.000 0.000 0.000 0.157 0.998 0.000 0.383 0.999 0.000
0.2 0.000 0.000 0.000 0.142 0.990 0.000 0.507 0.999 0.000
0.3 0.000 0.000 0.000 0.064 0.348 0.000 0.431 0.999 0.289
0.05 0.101 0.000 0.000 0.588 0.999 0.000 0.878 0.999 0.602

Apparel 0.09 0.019 0.000 0.000 0.307 0.999 0.000 0.889 0.999 0.631
0.15 0.000 0.000 0.000 0.208 0.999 0.000 0.982 0.999 0.970
0.2 0.000 0.000 0.000 0.054 0.999 0.000 0.948 0.999 0.864
0.3 0.000 0.000 0.000 0.013 0.953 0.000 0.569 0.999 0.000
0.05 0.540 0.219 0.567 0.743 0.999 0.754 0.615 0.999 0.623

Miscell. 0.09 0.479 0.316 0.500 0.710 0.999 0.729 0.616 0.999 0.601
0.15 0.394 0.000 0.377 0.714 0.999 0.584 0.776 0.999 0.747
0.2 0.102 0.000 0.377 0.758 0.999 0.584 0.795 0.999 0.747
0.5 0.102 0.000 0.000 0.758 0.999 0.066 0.795 0.999 0.181

Table 7.5: P-values for hypothesis tests in a semi-parametric factor model at z  =  1.2
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Rank of reduced demand at z = 0.9
Elimin. 1 2 3
share h X* LDU ALS x 2 LDU ALS x 2 LDU ALS

0.04 0.268 0.000 0.000 0.514 0.999 0.062 0.608 0.999 0.350
Food 0.08 0.322 0.000 0.000 0.439 0.999 0.014 0.309 0.999 0.027

0 .1 1 0.349 0.000 0.000 0.701 0.999 0.351 0.703 0.999 0.387
0.17 0.037 0.000 0.000 0.741 0.958 0.000 0.733 0.999 0.622
0.3 0.000 0.000 0.000 0.510 0.999 0.000 0.607 0.999 0.390

0.04 0.000 0.000 0.000 0.144 0.826 0.000 0.204 0.999 0.126
House 0.08 0.000 0.000 0.000 0.205 0.000 0.111 0.175 0.999 0.000

0 .1 1 0.000 0.000 0.000 0.752 0.986 0.000 0.514 0.999 0 .0 0 2

0.17 0.000 0.000 0.000 0.659 0.619 0.000 0.648 0.999 0.039
0.3 0.000 0.000 0.000 0.071 0.000 0.000 0.341 0.999 0.000
0.04 0.000 0.000 0.000 0.133 0.962 0.000 0.168 0.999 0.000

Health 0.08 0.000 0.000 0.000 0.281 0.999 0.000 0.262 0.999 0.000
0 .1 1 0.000 0.000 0.000 0.526 0.999 0.000 0.446 0.999 0.000
0.17 0.000 0.000 0.000 0.510 0 .0 0 2 0 .0 0 1 0.623 0.999 0.000
0.3 0.000 0.000 0.000 0.075 0.999 0.000 0.545 0.999 0.059

0.04 0.000 0.000 0.000 0.296 0.999 0.003 0.642 0.999 0.289
Transport 0.08 0.000 0.000 0.000 0.480 0.999 0.119 0.705 0.999 0.567

0 .1 1 0.000 0.000 0.000 0 .6 6 6 0.999 0.004 0.717 0.999 0.352
0.17 0.000 0.000 0.000 0.417 0.983 0.014 0.305 0.999 0 .0 0 1

0.3 0.000 0.000 0.000 0.082 0.999 0.000 0 .2 0 2 0.999 0.000
0.04 0.000 0.000 0.000 0.644 0.999 0.007 0.949 0.999 0.925

Apparel 0.08 0.000 0.000 0.000 0.696 0.999 0.000 0.992 0.999 0.991
0 .1 1 0.000 0.000 0.000 0.692 0.999 0.000 0.461 0.999 0.000
0.17 0.000 0.000 0.000 0.353 0.000 0.000 0.262 0.999 0.000
0.3 0.000 0.000 0.000 0.024 0.995 0.000 0.238 0.999 0.000

0.04 0.003 0.000 0.000 0.128 0.999 0.000 0.129 0.999 0.000
Miscell. 0.08 0.016 0.000 0.000 0.327 0.999 0.013 0.247 0.999 0.031

0 .1 1 0.141 0.000 0.000 0 .6 8 6 0.999 0.000 0.630 0.999 0.438
0.17 0.053 0.000 0 .0 0 1 0.565 0.999 0.154 0.498 0.999 0.375
0.5 0.000 0.000 0.950 0.445 0.999 0.929 0.291 0.999 0.836

Table 7.6: P-values for hypothesis tests in a  semi-parametric factor model at z  = 0.9
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7.3 Application of non-parametric model

In this section, we turn to applications of a non-parametric model to determine a local 

rank in a demand system. The data set is that constructed in Section 7.1 and already used 

in Section 7.2. Following the method described in Section 3.3.2, we will deduce the local 

rank by dropping one share of goods from the analysis, estimating the adjusted local rank 

in the reduced demand system by using tests developed in Section 5.2 and then adding to 

it 1 .

But before we proceed with local tests, let us examine again what happens when the 

variable z is ignored altogether. In other words, we suppose th a t the model is now Y| =  

f (X i)  drop one share of goods from the analysis, use Donald’s [28] method to estimate 

the adjusted rank of the reduced demand system (see also Section 2.4 and, in particular, 

the corresponding test statistic (2.37)) and then add to it 1 . By following Donald [28], we 

take X{ above to be the logarithm of total income and not the total income itself as in 

Section 7.2. The share th a t we drop is health care. (The results were invariant to which 

share of goods is eliminated. Only when the share of miscellaneous goods was dropped, the 

conclusion that we will make, was not as pronounced.) In order to use Donald’s estimation 

method, we first need to select a bandwidth h. We do so by using a  cross-validation which 

yields h =  0.7. Results of applications of Donald’s test are presented in Table 7.7. Column 

1 lists the value of h selected by cross-validation, as well as other values of h  tha t we 

consider. Columns 2 through 6  consist of the p-values for the hypothesis tests rk{ /}  <  L  

(or, equivalently, adrk{ir} +  1 <  L) with L  =  1,••• ,5, based on the test statistic (2.37). 

According to the results in Table 7.7, the rank of the full demand system is estimated as 

3 for all considered values of h. This finding should not be surprising because rank 3 has 

been found in the CEX data  sets obtained from many other survey years (see, for example, 

Lewbel [63] and Donald [28]).

We now turn  back to estimation of a  local rank. In order to  carry out the estimation,
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Rank of demand
h 1 2 3 4 5

0 .1 0.0000 0 .0 0 0 2 0.8071 0.9526 0.9563
0.3 0.0000 0.0000 0.9399 0.9724 0.9271
0.5 0.0000 0.0000 0.8917 0.9697 0.9199
0.7 0.0000 0.0000 0.8219 0.9378 0.8749

Table 7.7: P-values for hypothesis tests in a non-parametric model ignoring z

we need to choose a share of goods to drop, select a bandwidth for local test statistics and 

also decide on what values of price regime z  to consider. Since we want to compare our 

results to those in Table 7.7, we will drop the share of health care. We will consider the 

same price regimes as already used in Section 7.2, namely, z  =  1 , z  =  1.2 and z  =  0.9. For 

a bandwidth h, as argued in Remark 5.2.5, we will choose in fact two bandwidths hx and 

hz corresponding to the variables X i  and Z,, respectively. For hz , since we are interested 

in a fixed z, we will take the same values as in Section 7.2, namely, hz =  0.015, 0 .0 2 , 

0.05 and 0.08 when z  =  1, hz =  0.05, 0.09, 0.15 and 0.2 when z  =  1.2, and hz =  0.04,

0.08, 0.11 and 0.17 when z =  0.9. For hx , we will take three values from those appearing 

in Table 7.7, namely, hx =  0.1, 0.3 and 0.5 (the results with hx =  0.7 were similar to 

those w ith hx =  0.5). In addition, we will also report the results for hz =  0.3 which, 

together with hx =  0.7, was selected by cross-validation. Finally, as in Section 7.2, we will 

compute the variance-covariance estim ate E in (4.9) with hx =  0.7 and hz =  0.3 chosen by 

cross-validation.

Results on local rank estimation for the selected values of hx, hz and z  are presented 

in Tables 7.8, 7.9 and 7.10 dealing with z =  1, z =  1.2 and z =  0.9, respectively. The 

first two columns in these tables indicate the chosen bandwidths hx and hz . The other five 

columns consist of the p-values for the hypothesis tests rk{/(-,z)} <  L  (or, equivalently, 

adrk{P(-,z)} +  1 <  L) with L  =  1, ,5. The p-values are computed by using the

test statistic Ti(L ,z)  in (5.49) and  its asymptotic behavior established in Theorem 5.2.2. 

(Results based on the test statistic T<i{L,z) in (5.51) were of the same nature and hence
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axe not reported.) Based on the results of Tables 7.8, 7.9 and 7.10, we make the following 

observations.

1. Dependence of rank tests on choices of hx and hz. Observe that in almost all cases 

(except for z = 0.9 and hx =  0.1), for a  fixed hx, the p-values increase as hz becomes 

smaller. Observe also that in most cases (except when smallest values of hz are 

considered), for a fixed hz, the p-values also increase as hx becomes smaller. Hence, 

the p-values are likely to increase as hx and hz become smaller simultaneously. This 

shows that one would not reject a  lower rank when smaller hx and hz are considered.

2. Comparison to tests where z is ignored. Observe that the p-values in Tables 7.8, 7.9 

and 7.10 are higher than the corresponding ones in Table 7.7. Thus, one tends not 

to reject a  local rank which is lower than the rank obtained ignoring z. Observe also 

that, for a fixed hx, as hz increases, the p-values do not reach the corresponding p- 

values reported in Table 7.7. This behavior is in contrast to that observed in Section

7.2 for the semi-parametric factor model.

3. Estimates of local rank. Observe tha t the estimated local ranks are clearly less than 

3 for all three values of z. In particular, they are lower than the estimated rank 3 

obtained from Table 7.7 where z  is ignored. The estimated local rank comes closest 

to 2 at z  = 0.9 and maybe at z  =  1.2. For smaller values of hx and hz , however, the 

local rank is estimated as 1 throughout.

According to these observations, the local rank estimates are lower than the rank esti

mate obtained ignoring z. This phenomenon is in the spirit of that observed in connection 

to the semi-parametric factor model considered in Section 7.2. What is perhaps surprising 

is that the local rank estimates turned out to be so unequivocally smaller than rank 3 

obtained ignoring z. This raises an  important question whether local ranks are smaller 

than 3 not only for the three values o f z  considered here, but for all z 1 s. The answer to this 

question is only to come in the future after statistical tests for global ranks are developed.
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R em ark  7.3.1 As discussed in Section 5.2.3, there are potentially other ways to estimate 

a local rank in a non-parametric relation, namely, the LDU and the ALS methods for 

symmetric matrices (the minimum-x2 method corresponding to the test statistic T2 {L,z) 

in (5.51) yields results analogous to those in Tables 7.7-7.10). These alternatives are 

interesting and important because, as noted at the end of Section 5.1.4, they provide a 

better grip on an estimation object (in this case, a local rank of a non-parametric relation). 

In fact, the author has applied the LDU and the ALS methods with a  covariance-variance 

matrix W (z ) in these methods replaced by £  ® E and by comparing the obtained statistics 

to a chi-square distribution with (G  — L)(G  — L +  l) /2  degrees of freedom (see Section 

5.2.3). Interestingly, the results were similar to those obtained in Tables 7.7-7.10. We 

decided not to include them as there is no theoretical justification yet for the use of these 

methods.

Rank of demand at z = 1

fix fiz 1 2 3 4 5
0.015 0.8143 0.9791 0.9892 0.9963 0.9949

0 .1 0 .0 2 0.9526 0.9989 0.9984 0.9979 0.9970
0.05 0.9222 0.9999 0.9999 0.9999 0.9999
0.08 0.4968 0.9999 0.9999 0.9999 0.9999
0.3 0 .0 0 1 0 0.9507 0.9944 0.9969 0.9923

0.015 0.9555 0.9949 0.9981 0.9989 0.9984
0.3 0 .0 2 0.9713 0.9993 0.9997 0.9996 0.9982

0.05 0.4295 0.9997 0.9999 0.9999 0.9997
0.08 0.0107 0.9996 0.9999 0.9999 0.9988
0.3 0.0000 0.9884 0.9994 0.9981 0.9839

0.015 0.9424 0.9940 0.9967 0.9970 0.9969
0.5 0 .0 2 0.9061 0.9896 0.9939 0.9949 0.9852

0.05 0.0633 0.9911 0.9999 0.9998 0.9953
0.08 0.0000 0.9920 0.9997 0.9993 0.9914
0.3 0.0000 0.9196 0.9964 0.9900 0.9640

Table 7.8: P-values for hypothesis tests in a non-parametric model at z  =  1
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Rank of demand at 2  = 1.2

hx hz 1 2 3 4 5
0.05 0.6699 0.8691 0.9271 0.9549 0.9638

0 .1 0.09 0.6244 0.8314 0.9098 0.9450 0.9569
0.15 0.2138 0.7563 0.9367 0.9308 0.8895
0 .2 0.0462 0.7044 0.9255 0.9179 0.9065
0.3 0.0035 0.7754 0.9478 0.9530 0.9348

0.05 0.7723 0.9682 0.9839 0.9839 0.9722
0.3 0.09 0.5779 0.9082 0.9412 0.9390 0.8829

0.15 0.1470 0.9157 0.9249 0.9177 0.9006
0 .2 0.0113 0.9009 0.9318 0.9156 0.8917
0.3 0.0000 0.9404 0.9761 0.9615 0.9175
0.05 0.5185 0.8980 0.9311 0.9107 0.8581

0.5 0.09 0.4227 0.8798 0.9234 0.8937 0.8434
0.15 0.0694 0.8893 0.9099 0.8853 0.8180
0 .2 0 .0 0 1 1 0.8358 0.8899 0.8864 0.8253
0.3 0.0000 0.8469 0.9518 0.9322 0.8889

Table 7.9: P-values for hypothesis tests in a  non-parametric model a t 2  =  1.2

Rank of demand at 2  = 0.9
hx hz 1 2 3 4 5

0.04 0.1197 0.4977 0.7672 0.8831 0.8402
0 .1 0.08 0.2631 0.6509 0.9263 0.9923 0.9799

0 .1 1 0.4451 0.7383 0.9305 0.9925 0.9736
0.17 0.4265 0.9216 0.9865 0.9975 0.9851
0.3 0.0586 0.9296 0.9798 0.9946 0.9853
0.04 0.2271 0.9196 0.9753 0.9854 0.9799

0.3 0.08 0.2050 0.8532 0.9537 0.9712 0.9389
0 .1 1 0.2314 0.8614 0.9663 0.9579 0.9131
0.17 0.0532 0.9007 0.9881 0.9730 0.9345
0.3 0.0003 0.9615 0.9961 0.9911 0.9635

0.04 0.2297 0.9407 0.9621 0.9617 0.9427
0.5 0.08 0.2511 0.9219 0.9527 0.9454 0.9031

0 .1 1 0.1632 0.8819 0.9553 0.9408 0.8822
0.17 0.0070 0.8476 0.9728 0.9469 0.8890
0.3 0.0000 0.8661 0.9837 0.9659 0.9160

Table 7.10: P-values for hypothesis tests in a non-parametric model a t 2  =  0.9
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7.4 Simulation results

In this section, we use Monte Carlo simulations to examine small sample properties of tests 

for local ranks. We will focus on two such properties of a test, called a  size and a power. 

The size of a test is defined as a  frequency of rejecting the null hypothesis Ho when Ho is 

true. This frequency is computed at a given significance level from repeated test results in 

small or moderate size samples (hence the term  “small sample property”). The power of a 

test is a frequency of rejecting the null hypothesis H q when, in fact, the alternative Hi is 

true. Size and power provide information on two types of possible errors when making an 

inference concerning a  test from a finite sample of observations and thus serve as a  guiding 

tool in real life applications.

We will present here sizes and powers for local rank tests in the semi-parametric factor 

model only. Those for the non-parametric model will appear elsewhere. By the semi- 

parametric factor model, we mean here the (SPF) model defined in Section 3.1 and satis

fying the assumptions of that section. The hypothesis tests are then those for the rank of 

the corresponding m atrix @(z).

R em a rk  7.4.1 Alternatively, one may start with a semi-parametric factor system where 

the coordinate functions sum up to 1 and compute the small sample properties based on the 

maximum of the test statistics in all possible reduced systems (see Section 3.3.1). Although 

this approach is of a  particular interest in the context of demand systems, we do not pursue 

it here for the sake of simplicity. The results of this section provide information on small 

sample properties of tests in each of the reduced systems and we expect that most of our 

observations apply to the situations where one looks a t the m a x im u m  over all reduced 

demand systems as well.

The experimental set-up in the case of the semi-parametric factor model is as follows. 

We let Yi = Q (Z i)V (X i) + Ui, i =  1 , . . . , AT, where N  is the sample size, Zi and Xi 

are independent random  variables uniformly distributed on the intervals [—1 , 1] and [0 , 1],
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respectively, and Ui, i =  1 ,.. -, N ,  are independent A/"(0,1) random variables. The m atrix 

0 (z) and the vector V(x)  are given by

0 (z) =

(

\

1 1 + z 2 1 — 2 z2

0 022 (•*) 023 (z)

0 0 033 (z)

D (z), V{x) =

/

x

X 2  \ x /

with three different choices for the entries 0 (z) =  (0 2 2 (z ),0 2 3 (z),033(z)), namely, © i(z) =  

(z,0, z2), 0 2 (z) =  (1/4 +  z, 1/4, z) and ©3 (z) =  (1/4 4- z, 1/4,1/6 + z ) , and two different 

choices for the 3 x 3  non-singular matrix D{z), namely, D (z) = I 3 where I 3 is a  3 x 3 identity 

matrix, and D (z) satisfying D (z)Q (z)D (z)' = I 3 where Q(z) = p(z)E {V (X i)V {X \)'\Z \. =  

z) is the matrix appearing in (3.2). These choices o f 0 (z ) are motivated by the fact tha t 

we will consider local ranks for the semi-parametric factor model above at z =  0. In this 

case, the matrices © i(z), ©2 (z) and ©3(z) correspond to the local ranks L  =  1, L  =  2 and 

L  =  3, respectively, and hence cover all possible non-zero rank values for a  3 x 3 matrix. 

The size and power computations of a local rank test will then be based upon the results 

of the simulations for these three different choices of ©*(z) and we will refer to them  by 

saying that the (local) rank of the matrix 0 (z ) is L  =  1, L  =  2 or L =  3.

To understand our choices of the matrix D (z), recall from Section 5.1.3 th a t the 

minimum-x2 statistic for a  test of rank L is the sum of the smallest G — L  eigenvalues 

of the estimator T(z) of the matrix T(z) defined in (5.21). If the smallest non-zero eigen

value is close to zero, then the corresponding estim ated eigenvalue will be close to zero as 

well and hence ranks estimated by the minimum-x2 test be lower than those obtained 

in the case when the non-zero eigenvalues are larger. (This fact is well known in the statis

tical literature on ranks. See, for example, Cragg and Donald [19, 20].) The matrix D{z) 

satisfying D (z)Q {z)D (z)' =  I 3 allows to make non-zero eigenvalues of the matrix T(z) 

larger. In our experimental set-up, if D(z) = I3 , then the eigenvalues of the matrix T(z) at 

z =  0 are 0, 0.00281 and 1.879 when L  =  2, and 0.000016, 0.0032 and 1.8817 when L  =  3.
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For D(z) satisfying D {z)Q (z)D {z)' =  I3 , the eigenvalues are 0, 0.0405 and 3.084 when 

L =  2, and 0.012, 0.046 and 3.094 when L =  3. (Note th a t the non-zero eigenvalues are 

indeed larger for the latter choice of D(z).) Thus, by considering these two choices of D(z), 

we will examine small sample properties both in the situations where the smallest non-zero 

eigenvalue of the matrix T(z) is close to zero and in the situations where its distance to 

zero is larger.

The rank tests that we will consider are the minimum-x2) the asymptotic least squares 

and the LDU tests of Section 5.1. For the sample size N ,  we will take N  =  400 and 

N  = 1000. As for the bandw idth h  which enters into the statistics of the three considered 

rank tests, we will take h =  0.15, 0.25 and 0.5. Let us observe in the spirit of Sections

7.2 and 7.3 that, when N  =  400 {N  =  1000, respectively), there are on average 60, 100 

and 200 (150, 250 and 500, respectively) observations at the three chosen neighborhoods 

of z  — 0 , respectively.

Size calculations for tests of rank L = 1 and L  =  2 w ith the above choices of test 

statistics, matrix D(z) and param eter N  and h values are presented in Table 7.11. The 

choice of D found in the first column indicates that we work either with D(z) satisfying 

D (z)Q(z)D{z)' =  I 3  (that is, D (z) =  Q (z)~1̂ 2) or with D (z) = I 3 .  To compute the sizes of 

tests in Table 7.11, we use 1000 Monte Carlo replications and a 5 percent significance level. 

So, for example, to find the actual size of the LDU test when L  =  2, N  =  400, D{z) = I 3 

and h = 0.15, we first compute the LDU statistics (with h =  0.15) for rank L  =  2 test in 

1000 replications of the semi-parametric factor model of the sample size N  =  400 and with 

D (z) = I3 , and then compare these obtained statistics to the critical value of the limiting 

X2((3 — 2)(3 — 2)) =  x 2 ( l )  distribution at a 5 percent significance level. The actual size 

is just the frequency of those statistics that exceed the critical value (that is, their total 

number divided by the sample size). The sizes in other entries are obtained in an analogous 

way.

Based on the results of Table 7.11, we can draw the following conclusions. Observe
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Size of tests
Rank test L  =  1 L  = 2

D M ethod h \ N 400 1000 400 1000

D = Q~ 1! 2

m in-x2
0.15
0.25
0.5

0.0
0.0
0.0

0.0
0.0
0.6

0.1
0.1
0.5

0.2
0

0.6

LDU
0.15
0.25
0.5

28.7 
20.4
18.8

19.5
12

15.4

0.2
1.3
5.2

3
4.1
8.2

ALS
0.15
0.25
0.5

0.7
0.3
0.7

0.1
0.1
1.5

7.1
9.5
17.8

11.5
10.5
13.5

■J?IIQ

m in-x2
0.15
0.25
0.5

5.3
3.9
4.9

4
5.8
4.8

0.6
0.5
0.4

0.8
0.6
1

LDU
0.15
0.25
0.5

49.5
55.8
57.3

55.9
62.4
60.2

1.5
1.2
1.3

1.7
2.2
3.5

ALS
0.15
0.25
0.5

41.6
35.5
25.8

31.2
23.6
19.7

3.8
4.7
4.5

3.4
6.1
6.7

Table 7.11: Size o f tests in a  semi-parametric factor model

that, when testing for small rank (namely, rank L  =  1), the minimum-x2 test is the most 

undersized (as compared to the nominal size of 5 percent) and the LDU test is the most 

oversized for all values of h and N ,  and for both choices of D. Undersizing (oversizing, 

respectively) means that the rank is underestimated (overestimated, respectively) by a  test. 

Comparing two tests, we may also say that, when sizes for one of the tests are larger, the 

ranks estimated by this test will be higher. Now, when testing for higher rank (namely, 

rank L = 2), the sizes are largest for the ALS test. This suggest th a t the rank estimated by 

the ALS test will be the highest. Interestingly, this is what we observed in the applications 

of the semi-parametric factor model in Section 7.2. Results of Table 7.11 also suggest that 

one would not reject a  lower rank for smaller values of h  because the sizes of tests decrease 

in most cases as h becomes smaller. This is also what we found in our earlier applications.

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

158

Power of tests
True rank L = 2 L = 3
Rank test L  =  1 L = 1 L = 2

D Method h \ N 400 1000 400 1000 400 1000

D = Q ~ 1/ 2

min-x2
0.15
0.25
0.5

7.40
29.00
86.00

64.70
97.90
100.00

22.20
62.60
98.40

89.70
100.00
100.00

2.50
10.50
47.50

29.40
62.30
93.30

LDU
0.15
0.25
0.5

33.30 
47.90
81.30

65.00
92.90
99.70

43.90
64.70
90.10

81.69
97.70 
100.00

0.30
1.50

13.40

6.40
11.30
43.30

ALS
0.15
0.25
0.5

14.70
37.10
88.40

69.00 
96.59
100.00

38.50
73.00
99.59

95.50
99.90
100.00

28.00
56.49
84.00

79.80
93.80 
99.40

D = h

min-x2
0.15
0.25
0.5

6.40
7.20
9.60

9.50
9.10

20.80

6.00
7.60
12.40

9.90
12.60
20.20

0.30
0.30
1.00

0.90
1.10
1.40

LDU
0.15
0.25
0.5

46.20
49.50
55.89

54.00
55.49
65.50

43.00
48.40
53.10

53.10
53.20
63.70

0.90
1.10
1.20

1.20
1.40
2.70

ALS
0.15
0.25
0.5

41.10
38.00
33.09

32.99 
32.40
32.99

42.30
38.70
36.10

42.30
38.70
36.10

4.20
3.10
4.90

4.70
6.10
8.10

Table 7.12: Power of tests in a semi-parametric factor model

Power calculations can be found in Tables 7.12 and 7.13 where we present rejection 

frequencies when testing for rank L  =  1 in the semi-parametric factor models of ranks 

L = 2 and L  =  3, and for rank L  =  2 in the semi-parametric factor model of rank L = 3. 

Table 7.12 contains putative powers, that is, rejection frequencies computed by using the 

critical value at a significance level of 5 percent corresponding to the limiting distribution 

used in a test. Table 7.13 consists of size-adjusted powers, that is, rejection frequencies 

computed by using the critical value at which the actual size of a test in Table 7.11 is 5 

percent. So, for example, to compute the size-adjusted power for the LDU test of rank 

2 when h =  0.25, N  =  400, D$ =  I 3 and the matrix ©(z) in the semi-parametric factor 

model has rank L =  3, we first go back to the results on size calculations in this case and 

take the critical value that one would have used to attain a 5 percent rejection frequency
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Size-adjusted power of tests
True rank L = 2 L = 3
Rank test L =  1 L =  1 L  = 2

D Method h \ N 400 1000 400 1000 400 1000

D = Q ~ 1/ 2

min-x2
0.15
0.25
0.5

76.00
94.30
99.59

99.40
100.00
100.00

91.10
99.20
100.00

100.00
100.00
100.00

40.10
59.20
80.30

84.70
94.89
98.90

LDU
0.15
0.25
0.5

4.60
5.60 
22.5

3.10
21.70
92.70

0.40
2.30

58.40

7.60
59.59
98.90

6.49
9.90
12.40

13.30
14.00
14.50

ALS
0.15
0.25
0.5

58.60
93.10
98.20

99.40
100.00
100.00

82.60
98.90
99.90

100.00
100.00
100.00

22.20
40.40
50.40

55.20
82.20 
90.80

IIQ

min-x2
0.15
0.25
0.5

5.80
8.70
9.60

10.50
8.60

21.40

5.70
8.90
12.40

11.50
11.60
21.00

6.00
6.29
4.60

5.30
5.30
5.30

LDU
0.15
0.25
0.5

3.40
4.20
3.90

3.80
5.30
3.90

2.80
3.00
3.10

3.40 
3.90
3.40

3.90
5.20
5.40

4.50
3.30
4.80

ALS
0.15
0.25
0.5

5.30
3.70
6.80

5.10
6.20
6.90

5.10
3.20
6.40

5.50 
5.30
8.50

5.40 
3.20
5.40

7.80
4.80 
6.10

Table 7.13: Size-adjusted power of tests in a  semi-parametric factor model

when testing for rank L  =  2 with h =  0.25, N  =  400 and D =  / 3. The size adjusted power 

is then the frequency of those LDU statistics for rank L  =  2 test in 1000 replications that 

were larger than this adjusted critical value. Both putative and size-adjusted powers can 

be found in the statistical literature (see, for example, Cragg and Donald [19], p. 1307, 

and Cragg and Donald [18], pp. 229-230). Size-adjusted powers are thought to allow to 

compare results across different tests and tests w ith different parameter values. Putative 

powers are used because they provide information and feeling on how misleading the results 

are at the nominal significance levels.

Based on the results of Tables 7.12 and 7.13, we make the following observations. As 

already mentioned earlier, the results when D (z) = Q (z)~1/2 are quite different from those
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Size of tests ignoring z
Rank test L =  1 L =  2

D Method N  = 400 N  =  1000 AT =  400 N  =  1000
min-x2 100.0 100.0 8.9 11.3

D  =  Q " 1/2 LDU 100.0 100.0 11.8 11.5
ALS 100.0 100.0 29.8 22.8

min-x2 13.1 26.7 1.4 1.2-5IIC| LDU 61.9 69.9 3.2 6.5
ALS 24.2 33.1 6.7 11.4

Table 7.14: Size of tests in a  semi-parametric factor model ignoring z

when D (z) =  I 3 . W hen D(z) =  Q (z)~1̂ 2, the smallest and other eigenvalues of the matrix 

r(z) at z  =  0 are larger and hence the minimum-x2 and, interestingly, the other two tests 

reject a lower rank more often (larger power). Note also that, since the power decreases 

in most cases as h becomes smaller, the estim ated rank will be lower for smaller h. This 

observation only confirms similar observations made from the results of Table 7.11 and in 

the applications of the semi-parametric factor model in Section 7.2. Let us also note from 

the results of Table 7.12 that, when testing in the semi-parametric factor model of rank 

L =  3, the rank estimated by the ALS test is the largest (since the powers of the ALS tests 

are the largest). This is also what we found in our applications in Section 7.2.

R e m a rk  7.4.2 Observe from Tables 7.11, 7.12 and 7.13 that the power of tests improves 

as h becomes larger while, at the same time, the sizes of tests are typically compara

ble. (This is most notable for the minimum-x2 test.) This observations suggests that, in 

practice, one may prefer the values of h which are larger.

Finally, in Tables 7.14 and 7.15, we present size and (putative) power computations for 

rank tests in the semi-parametric factor model when the variable z is ignored. In  other 

words, we generate the data according to the semi-parametric factor model chosen above 

but when testing for different ranks, we ignore the variables z  in the model altogether. 

Observe from Tables 7.14 and 7.15 that bo th  size and power of tests increase as compared
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Power of tests ignoring z
True rank L =  2 L --= 3
Rank test L =  1 L = 1 L =  2

D Method N  =  400 N  =  1000 N  =  400 N  =  1000 N  =  400 N  =  1000
min-x2 99.30 100.00 99.90 100.00 70.70 97.70

D = Q - l>2 LDU 90.50 99.09 99.20 100.00 30.70 89.30
ALS 99.50 100.00 99.90 100.00 79.89 98.59

min-x2 16.10 35.70 16.90 40.50 1.00 2.40
D = IZ LDU 58.20 62.30 58.20 63.10 2.60 5.90

ALS 29.10 42.30 31.10 46.40 6.40 10.40

Table 7.15: Power of tests in a  semi-parametric factor model ignoring z

to those in Tables 7.11 and 7.12 for all three types of tests and all parameter N , h and D 

values. Hence, the rank estimated ignoring the variable z  is higher than that obtained when 

z  is taken into account. Moreover, it is likely to be higher than the true (local) rank because 

tests are clearly oversized in most cases according to Table 7.14. These observations agree 

with that made in the applications of the semi-parametric factor model in Section 7.2.
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